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ABSTRACT 
     Among all the methods used for determining fluid saturation of the reservoir rock, the ability of neural networks to predict 

fluid saturation in reservoir rock is of great interest to researchers. This study gathers the necessary data for estimating this 
important reservoir parameter and the variables involved in the process. Afterward, artificial neural networks (ANNs) and 
particle swarm optimization (PSO) algorithms are combined to provide a proper and accurate model for estimating water 
saturation. This combination provides an outstanding model in which fluid saturation distribution at any point in one of Iran’s 
carbonate oil reservoirs can be obtained. To predict the water saturation value as the model output, several input parameters, 
including depth, gamma ray, resistance, neutron, micro-spherical resistance, and spontaneous potential logs, are employed. 
The multi-layer perceptron neural network (MLP) and radial basis function neural network (RBF) are the two models used, 
and the accuracy of each model is examined. Although the relationship between fluid saturation in the reservoir and logging 
information is completely nonlinear, these two artificial intelligence (AI) models can very well recognize this nonlinear 
relationship and provide great predictions with high correlation coefficient (R) values and low average absolute relative 
deviation (AARD) and root mean square error (RMSE) values. The values of R, AARD, and RMSE for the MLP model are obtained 
as 0.9739, 33.24, and 0.0824, respectively. Those for the RBF model are 0.9986, 7.47, and 0.0024, respectively, reflecting that 
the RBF model is superior to the MLP model due to its higher R value and lower AARD and RMSE values. 
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I. INTRODUCTION 

One of the most important issues facing Iran's oil 
industry today is the continuous production and 
exploration of oil and gas at minimal cost. According to 
the latest information, over 60% of the world’s oil 
reserves and 40% of gas reserves are located in 
carbonate reservoirs. The majority of reservoirs in the 
Middle East are also predominantly carbonate (Riazi et 
al., 2007). Accurate estimation of fluid saturation within 
rock pores is essential for calculating in-place reserves 
in a reservoir. Changes in fluid saturation during 
production from the reservoir indicate which sections 
are more efficient for production. These observations 
assist petroleum engineers in predicting production 
changes and optimizing the reservoir’s production and 
depletion strategies. Any miscalculation in determining 
saturation levels can lead to the loss of productive oil 
zones. Since determining fluid saturation at the surface 
through core tests is challenging, time-consuming, and 
often lacks sufficient accuracy, the majority of experts in 
the oil sector prefer to use well logging data. On the other 

hand, carbonate rocks, due to their complex structure 
and heterogeneous properties, often pose challenges in 
interpreting logging data. Consequently, conventional 
modeling with fixed computational procedures may not 
yield acceptable answers in many cases. Given the 
importance of carbonate reservoirs, as most of the 
world’s reservoirs are carbonate, methods that can 
accurately predict this petrophysical parameter have 
attracted considerable attention from researchers 
(Shedid and Saad, 2017). 

New computational tools have provided solutions to 
these problems. Artificial neural networks (ANNs) are 
one of these new, efficient, and powerful computational 
tools that allow for the high-accuracy correlation of a 
wide range of data without getting involved in detailed 
computational models. Therefore, by utilizing intelligent 
systems, the development plan of an oil field can be 
significantly improved by generating the necessary data 
and reducing costs. An ANN, with its unmatched 
mathematical capabilities, can relate data obtained from 
well logging to fluid saturation. A notable feature of this 
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model is its high flexibility, ease of validation, and simple 
interpolation and extrapolation of data. In this study, this 
tool and its capabilities in the field of extracting fluid 
saturation data are analyzed, and suitable computational 
networks are developed to estimate fluid saturation in 
the reservoir using well logging data and ANNs. Previous 
studies have been conducted on the application of 
intelligent methods to obtain reservoir rock properties 
through well logging data, including the following: Al-
Bulushi et al. (2009) used ANNs to predict water 
saturation values from well logging data. The model was 
examined on one of the oil fields in Oman, showing a 
strong ability to estimate water saturation with a 
correlation coefficient of 0.91. Kaydani et al. (2014) 
studied permeability estimation in one of the oil fields in 
Iran based on a multi-gene genetic algorithm. The results 
obtained from this model were compared with values 
achieved from an adaptive neuro-fuzzy inference system 
and genetic algorithm, demonstrating that the model 
could serve as a quick and suitable method for 
estimating permeability. Azizi et al. (2017) utilized ANNs 
and support vector machines (SVMs) to estimate 
permeability in one of the heterogeneous carbonate 
reservoirs. Initially, well logging data were categorized 
into electrical facies using principal component analysis 
and model-based cluster analysis. Each electrical facies 
was then considered as input for the ANN and SVM. The 
ANN was trained with ten hidden layers using the 
backpropagation and momentum gradient descent 
algorithms. This study indicated that the radial basis 
function (RBF) of the SVM had lower error rates 
compared to the ANN. Soleimani et al. (2020) analyzed 
the porosity of an oil field in Iran using ANNs, with their 
study indicating that estimating porosity using ANNs is 
preferable compared to other methods. Okon (2021) 
employed a developed feedforward backpropagation 
neural network model with multiple inputs and outputs 
to predict the petrophysical properties of the reservoir, 
including porosity, permeability, and water saturation in 
the Niger Delta region. The results reflected that this 
model could serve as a suitable method for estimating 
petrophysical parameters, achieving a correlation 
coefficient of 0.99. Gamal and Elkatatny (2022) 
investigated a predictive model for rock porosity based 
on ANNs, noting that rock porosity significantly impacts 
hydrocarbon reserve estimation and is considered an 
important petrophysical feature. Most porosity 
measurements are conducted in laboratories, which are 
costly and time-consuming. This study utilized a new 
model based on ANNs, with drilling data as input 
parameters and rock porosity as the output parameter. 
The results demonstrated that the model possesses high 
accuracy and capability. García-Benítez and Arana-
Hernández (2023) employed ANNs to estimate 
permeability using well logging and core data in 
heterogeneous environments. The input data included 

depth, porosity, water and oil saturations, grain density, 
resistivity, and gamma-ray data, while the network 
output was rock permeability. The results were 
compared with three semi-empirical models used to 
describe the reservoir, concluding that the ANN 
provided the best overall prediction and the highest 
correlation coefficients compared to the three 
conventional methods in heterogeneous formations. 

Although particle swarm optimization (PSO) has been 
applied in various optimization problems within 
petroleum engineering, its application in optimizing RBF 
network parameters for fluid saturation prediction is 
limited in the literature. Previous studies on fluid 
saturation estimation have mainly used neural networks 
with fixed parameters, genetic algorithms, or other 
heuristic approaches, without employing PSO to fine-
tune both the spread value and the number of hidden 
neurons. The integration of PSO with RBF in this study 
provides a robust framework that combines the 
nonlinear approximation capability of RBF with the 
global search efficiency of PSO, leading to automated 
parameter selection and improved predictive accuracy. 
This represents a distinctive contribution of the present 
work compared to prior studies. Considering that the use 
of ANNs for feature extraction has recently emerged in 
research, and that there is no longer operator 
intervention in feature determination, this has 
substantially enhanced identification and classification 
accuracy. The novelty in this study aims to extract 
features using the integration of multiple neural 
networks to estimate fluid saturation. This field is new, 
and given the noteworthy accuracy of well logging data 
for oil carbonate reservoirs in recent years and the lack 
of a concentrated resource on this topic, it can be said 
that this research has substantial potential for further 
exploration. We intend to employ different models and 
algorithms, and as a result, a comparison between them 
will be conducted, validating the results of the model’s 
predictions against the measured data. 

II. METHODS 

A. Multi-layer Perceptron Neural Network (MLP) 

MLPs have a good capability for producing a specific 
output corresponding to an input vector. These 
networks are particularly suitable for solving simple 
classification problems. MLP is the most well-known 
model of ANN. A multilayer neural network consists of 
three parts: the input layer, the hidden layer, and the 
output layer (Fausett, 2006). The perceptron is the 
simplest type of neuron modeling. Since examining 
multiple perceptrons in different layers can be 
somewhat complex, we will focus on a single perceptron. 
A perceptron has a series of external inputs, an internal 
input known as bias, and an output. Each perceptron 
represents a neuron, and the output of a perceptron is 
always Boolean. This means the output can take on two 
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values: 1 or 0. If the output of a perceptron is 1, it is 
referred to as an active perceptron. All inputs, including 
the bias, have an associated weight, which is multiplied 
by the input value. Typically, the weight of the bias is set 
to 1. One of the most important factors for any neuron is 
its activation function. The activation function 
determines how the neuron’s output will behave based 
on its inputs. In perceptrons, we use one of the simplest 
activation functions. This function sums all the 
perceptron’s inputs after multiplying them by their 
respective weights. If the sum is greater than or equal to 
a certain threshold, the output will be 1, meaning the 
perceptron will be activated; otherwise, the perceptron 
will be inactive (Barlow, 1989). One of the main 
characteristics of perceptrons is their ability to learn. 
This learning in perceptrons is supervised, meaning we 
need to have a set of inputs along with the correct 
outputs for the perceptron to be able to mimic them. 

B. Radial Basis Function Neural Network (RBF) 

RBFs are widely used for non-parametric estimation 
of multidimensional functions through a limited set of 
training data. RBFs are particularly interesting and 
efficient due to their rapid and comprehensive training, 
which has garnered special attention. It has been proven 
that RBFs are extremely powerful approximators, 
capable of approximating any continuous function to any 
degree of accuracy, provided they have a sufficient 
number of neurons in the hidden layer (Dayhoff, 1990; 
Huang and Zhang, 1994). Notably, these networks 
possess this property with just a single hidden layer. 
RBFs are primarily inspired by statistical techniques for 
pattern classification and have essentially emerged as a 
vital type of neural network, with their significant 
advantage being the classification of patterns that exist 
in non-linear spaces. Although the number of these 
techniques is limited, they have been widely utilized. 
These networks are often compared to error 
backpropagation neural networks. The basic 
architecture of RBF consists of a three-layer network, as 
illustrated in Fig. 1 (Du & Swamy, 2006). 

  

 
Fig. 1. Schematic representation of an RBF (Du & Swamy, 

2006) 

 

The input layer consists of only a single input layer, 
where no processing occurs. The second layer, or hidden 
layer, establishes a nonlinear mapping between the 
input space and a typically higher-dimensional space, 
playing a crucial role in transforming nonlinear patterns 
into linearly separable patterns. Finally, the third layer 
produces a weighted sum along with a linear output. 
When RBF is employed for function approximation, such 
an output is useful; however, if classification of patterns 
is required, a hard limiter or a sigmoid function can be 
applied to the output neurons to generate output values 
of 0 or 1. Each neuron in layer j of the hidden layer 
implements a specific algorithm that consists of two 
steps: in the first step, the difference of each input P_i  
(i=1,2,…,R) with respect to its associated weight (Wij) is 
calculated, and this value is subjected to the Euclidean 
distance function or norm. Ultimately, the value of n is 
obtained by multiplying the resulting value by the 
threshold value. 

 

𝑏𝑖𝑛𝑗 = ‖𝑝𝑖 −𝑤𝑖𝑗‖                                                      (1) 
 

Thus, one of the differences between RBFs and MLPs 
lies in the definition of the value n. In RBFs, n is defined 
as the difference of the Euclidean distance between the 
input vector and the weight vector, whereas in MLPs, it 
is the dot product of these two vectors. In the second 
step, the activation function f is applied to n to obtain the 
neuron’s output. The most commonly used activation 
functions in RBFs for the hidden layer are exponential 
Gaussian functions, while the identity function is used 
for the output layer. The exponential Gaussian function 
is defined as follows (Devijver and Kittler, 1982): 

 

𝐹(𝑛𝑗) = exp(−𝑛𝑗)
2                                                      (2) 

 

The positive features of RBFs include fast learning, the 
ability to train with minimal initial datasets, the 
determination of the optimal network size by the 
algorithm itself, and the absence of local minimum 
problems. 

C. Particle Swarm Optimization (PSO) 

The PSO algorithm is a type of optimization algorithm 
that operates based on the random generation of an 
initial population. This algorithm is inspired by and 
simulates the collective flight of birds or the collective 
movement of fish. Each member of this group is defined 
by a velocity vector and a position vector in the search 
space. In each iteration, the new position of the particles 
is defined based on the velocity vector and the position 
vector in the search space. During each iteration, the new 
position of the particles is updated according to the 
current velocity vector, the best position found by that 
particle, and the best position found by the best particle 
in the group. This algorithm was initially defined for 
continuous parameters; however, since some 
applications involve discrete parameters, the algorithm 
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has also been extended to discrete cases. The discrete 
version of the PSO algorithm is referred to as Binary PSO 
(BPSO), where the position of each particle is defined by 
binary values of one and zero. In this algorithm, the 
position of each particle is represented by binary values 
of either zero or one. In BPSO, the value of each particle 
can change from zero to one or from one to zero. 

Since PSO also begins with a randomly generated 
population matrix, it is similar to many other 
evolutionary algorithms, such as genetic algorithms. 
Unlike genetic algorithms, PSO does not have 
evolutionary operators like mutation and crossover. 
Each population element is called a particle, which is 
equivalent to a chromosome in genetic algorithms. In 
fact, the PSO algorithm consists of a specified number of 
particles that randomly receive initial values. For each 
particle, two values, namely position and velocity, are 
defined and modeled respectively by a position vector 
and a velocity vector. These particles iteratively move in 
the n-dimensional space of the problem to search for 
new possible options by calculating the optimal value as 
a measure of fitness. The dimensionality of the problem 
space corresponds to the number of parameters present 
in the function to be optimized. A memory is allocated to 
store the best position of each particle in the past, and 
another memory is allocated to store the best position 
encountered among all particles. Using the experiences 
from these memories, particles decide how to move in 
the next iteration. In each iteration, all particles move in 
the n-dimensional space of the problem until the global 
optimal point is found. The particles update their 
velocities and positions based on the best global and 
local solutions.  

The PSO algorithm was configured in MATLAB with 
carefully selected parameters to ensure a balance 
between global search capability and convergence 
speed. Table 1 summarizes the complete parameter 
settings used in this study for optimizing the spread and 
the number of neurons in the RBF network. These 
settings allowed the algorithm to efficiently explore the 
search space while avoiding premature convergence. 

III. TARGET OIL FIELD  

The Bibi Hakimeh oil field is located in the Dezful 
embayment, Southwest of Iran. This oil field is situated 
in the city of Gachsaran, within the coordinates of 50° 12' 
to 50° 53' East longitude and 30° 16' to 29° 54' North 
latitude. The field was discovered with the drilling of 
well BH-1 in 1961, and production commenced in the 
same year. The Bibi Hakimeh oil field is composed of an 
asymmetric subsurface anticline, 70 km in length and 7 
km in width, located approximately 250 km southeast of 
Ahvaz. The reservoirs of this field include Asmari, 
Bangestan, and Khami. The Pabdeh and Gurpi layers, 

approximately 400 m thick, separate the producing 
reservoirs of Asmari and Bangestan. The Asmari 
reservoir horizon in this field has a length of 75 km and 
a width of 5 km. Based on the petrophysical and 
lithological characteristics of this reservoir horizon, it is 
divided into four distinct zones. The Bangestan horizon 
present in this oil field has a length of 72 km and a width 
of 4.5 km. This reservoir horizon is also divided into nine 
distinct zones based on its petrophysical and lithological 
characteristics. The Khami oil system of the Bibi 
Hakimeh oil field consists of the Fahliyan, Gadvan, and 
Darian formations. The Bakhtiari, Aghajari, and Mishan 
formations are the surface outcrops of this field (Faghih 
et al., 2022). Fig. 3 shows the location of the Bibi 
Hakimeh oil field in the Dezful embayment. 

IV. DATA GATHERING 

To predict the saturation of fluids using AI 
algorithms, 350 log data points from one of Iran’s 
carbonate oil reservoirs, located in the Bibi Hakimeh oil 
field, were utilized. The input parameters for various 
models include depth, gamma ray log (GR), resistivity log 
(RT), spontaneous potential log (SP), neutron log (CNL), 
and micro-spherical focused log (MSFL), with water 
saturation considered as the output parameter of the 
models. It is worth noting that by predicting water 
saturation, oil saturation can also be easily calculated. 
Some static parameters of the input and output data, 
such as minimum, maximum, and average values for 
each parameter, are presented in Table 2. For model 
construction, 85% of the data was used for training each 
model, while 15% of the data was used for testing the 
models. 

Fig. 4 illustrates the Pearson correlation coefficients 
among the input well log parameters and water 
saturation. As shown, the resistivity log (RT) exhibits the 
strongest negative correlation with water saturation 
(−0.63), indicating that higher resistivity values are 
generally associated with lower water saturation, which 
is consistent with petrophysical principles (i.e., the lower 
saline water saturation, the higher formation resistivity). 
In contrast, the neutron log (CNL) shows the highest 
positive correlation with water saturation (0.42), 
followed by spontaneous potential (SP) with a moderate 
positive correlation (0.36). Additionally, moderate to 
strong correlations exist between specific input 
parameters, such as the negative correlation between RT 
and CNL (−0.62) and the positive correlation between 
MSFL and CNL (0.44). These relationships highlight the 
complementary nature of the selected input logs while 
also suggesting potential redundancy among specific 
measurements. 
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Table 1. PSO parameter settings used for RBF network training 
Parameter Value / Setting Description 

Swarm size 500 Number of particles in the swarm 
Maximum iterations 1000 Maximum allowed iterations before termination 
Maximum stall iterations 1000 Iterations allowed without improvement in fitness 
Initial swarm range −8.5 to +8.5 Range for randomly generating initial particle positions 
Cognitive learning coefficient (c1) 1.49 (MATLAB default) Weight for the individual particle’s best-known position 
Social learning coefficient (c2) 1.49 (MATLAB default) Weight for the global best-known position in the swarm 

Termination criteria 
Max iterations or minimal 
improvement in fitness 

Stopping condition 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Flowchart of the suggested RBF-PSO algorithm 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 2. presents the flowchart of the suggested RBF-PSO algorithm. 
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Fig. 3. Location of the Bibi Hakimeh oil field in the Dezful embayment (Abbasi and Tabatabaei, 2019) 

 
Table 2. Static parameters of the input and output data used 

in this study 
Parameter Type Minimum Maximum Average 
Depth (𝑚) Input 1150 1200 1175 
Resistivity 
Log (RT) 
(Ω𝑚) 

Input 10.51 563.84 73.85 

MSFL Log 
(Ω𝑚) 

Input 1.96 104.27 6.23 

Neutron 
Log (CNL) 

(%) 
Input 0.81 15 5.41 

SP Log 
(𝑚𝑣) 

Input 5.3 90.7 56.6 

GR Log 
(𝐴𝑃𝐼) 

Input 14.14 130.01 42.2 

Water 
Saturation 
(fraction) 

Output 0 0.3 0.2 

V. MODEL DEVELOPMENT 

A. MLP Model 

This model consists of three layers, with the middle 
layer, or hidden layer, potentially having one or more 
sub-layers. However, based on previous studies and 
research, it has been proven that selecting a single sub-
layer for the middle layer is sufficient for predicting data 
with acceptable accuracy. In this research, a single 
middle layer is also used for data prediction. The 
hyperbolic tangent function is employed in the middle 
layer, while a linear function is used in the output layer. 
The number of neurons in the middle layer is a crucial 
parameter affecting the accuracy of the model. In this 
study, the number of neurons in the middle layer varies 
from 4 to 16, and the accuracy of the networks is 
evaluated in each case. The accuracy of the networks is 
calculated by computing the mean squared error (MSE) 
between the actual data and the data predicted by the 
model for both the training and testing sections. Fig. 5 
illustrates MSE for the training and testing data as a 

function of the number of neurons in the middle layer. As 
shown, the lowest MSE occurs with 14 neurons, 
indicating that the network with this number of neurons 
in the middle layer has the highest accuracy. Therefore, 
this model is selected for data prediction and 
comparison with other models. 

B. RBF Model 

The number of layers in this type of network, similar 
to multilayer neural networks, consists of an input layer, 
a middle or hidden layer, and an output layer. In these 
networks, the middle layer cannot have sub-layers and 
consists of only a single fixed layer. Two parameters, 
namely the spread number and the number of neurons 
in the middle layer, significantly affect the accuracy of 
the model. Therefore, to present a model with acceptable 
accuracy, it is essential to optimize the numerical values 
of these two parameters. The PSO algorithm is utilized to 
optimize these two parameters. Initially, a population of 
100 members is selected for the values of these two 
parameters. Based on these parameters, 100 models are 
constructed, and the accuracy of each model is calculated 
by determining its MSE. Then, by using the operators 
related to the PSO algorithm, a new population of 100 
members is created based on the best solutions from the 
previous population. This process continues with the 
PSO algorithm until optimal solutions are found. Fig. 6 
shows the minimum MSE against the iterations of the 
PSO algorithm.  

As indicated, after 142 iterations, the MSE stabilizes 
and no longer changes, indicating that the algorithm has 
converged to the minimum parameter values. The 
optimal values for the spread parameter and the 
maximum number of neurons in the middle layer are 
determined to be 0.38 and 24, respectively. Using these 
two parameters, a radial basis model is constructed for 
data prediction, and its accuracy is compared with that 
of other models. 
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Fig. 4. Pearson correlation heatmap between input well log parameters and water saturation (SW), illustrating the 

strength and direction of relationships (−1 to +1) among variables. 

 
Fig. 5. Change in MSE as a function of the number of neurons in the middle layer for testing and training Data 

 
 
 
 

 
  

4 6 8 10 12 14 16

Train Data 0.00721 0.00717 0.00757 0.00703 0.00751 0.00657 0.00705

Test Data 0.0074 0.00714 0.00733 0.00711 0.00739 0.0068 0.00718

0.006

0.0062

0.0064

0.0066

0.0068

0.007

0.0072

0.0074

0.0076

0.0078

M
SE
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C. Evaluation Criteria for Model Performance 

These statistical parameters include the average 
absolute relative deviation (AARD) and the root mean 
squared error (RMSE). The following formulas are used 
to calculate these parameters: 

 

%𝐴𝐴𝑅𝐷 =
100

𝑁
∑ |

(𝜆𝑝𝑟𝑒𝑑(𝑖)−𝜆𝐸𝑥𝑝(𝑖))

𝜆𝐸𝑥𝑝(𝑖)
|𝑁

𝑖=1                                  (3)  

𝑅𝑀𝑆𝐸 = (
∑ (𝜆𝑝𝑟𝑒𝑑(𝑖)−𝜆𝐸𝑥𝑝(𝑖))

2𝑁
𝑖=1

𝑁
)0.5                                       (4) 

Where 𝜆𝑝𝑟𝑒𝑑(𝑖) denotes the predicted value by the 

model and 𝜆𝐸𝑥𝑝(𝑖) stands for the actual value of the 

parameter, and N represents the number of data points.  

VI. RESULTS 

A. MLP 

After determining the number of neurons in the input 
layer, the training data are used to construct this model. 
Following the model creation, its performance and 
accuracy are further evaluated using the testing data. 
The cross-plots in Figs. 7 and 8 depict the correlation 
coefficient (parameter R) between the saturation 
obtained from the logs and the saturation predicted by 

the MLP for both the training and testing data. The 
horizontal axis represents water saturation data 
obtained from the logs, while the vertical axis represents 
the data predicted by the model. The closer the R is to 
one, the higher the accuracy of the model. Fig. 9 shows 
the relative error for the training and testing data related 
to the designed MLP network, indicating the number of 
data points and the vertical axis representing the 
calculated relative error. The closer the data points are 
to the horizontal line corresponding to a relative error of 
zero, the more accurate the model is. 

In Figs. 10 and 11, a comparison is made between the 
saturation values predicted by the MLP and those 
obtained from the well logs. The horizontal axis 
represents the number of water saturation data points. 
In contrast, the vertical axis shows the water saturation 
data obtained from the well logs and the data predicted 
by the model. The greater the overlap between the 
circular data points and the dashed lines, the closer the 
log-derived data and the model’s predicted data are to 
each other, indicating that the model has higher 
accuracy. The training data are shown in Fig. 10, and the 
testing data are exhibited in Fig. 11. 

 

 
Fig. 6. Performance of the PSO algorithm for optimizing parameters of the radial basis network 

 

 
Fig. 7. Correlation coefficient between water saturation values obtained through well logs and those using MLP for training data 
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Fig. 8. Correlation coefficient between water saturation values obtained through well logs and those using MLP for testing data 

 

 
Fig. 9. Relative error for training and testing data of MLP 

 
Fig. 10. Comparison of predicted values of water saturation by MLP with water saturation data obtained through well logs for 

training data 
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Fig. 11. Comparison of predicted values of water saturation by MLP with water saturation data obtained through well logs for 

testing data 
 

B. RBF with PSO Algorithm  

As previously mentioned, this model has two 
parameters: the maximum number of neurons and the 
spread number, for which optimal values of 24 and 0.38 
are obtained by using the PSO algorithm. Using these two 
values, the model is trained and constructed based on 
the training data, and the predictions made by this model 
are evaluated using the testing data, resulting in the 
following outcomes. The cross-plots in Figs. 12-13 
exhibit R between the water saturation obtained from 
the well logs and that predicted by the RBF for both the 
training and testing data. The horizontal axis represents 
the water saturation data obtained from the logs, while 
the vertical axis shows the data predicted by the model. 
The closer the R is to one, the higher the accuracy of the 
model. Fig. 14 shows the relative error for the training 
and testing data related to the designed RBF network. 

The horizontal axis represents the number of data 
points, while the vertical axis indicates the calculated 
relative error. The closer the data points are to the 
horizontal line corresponding to a relative error of zero, 
the more accurate the model is. 

In Figs. 15 and 16, a comparison is made between the 
saturation values predicted by the RBF network and the 
saturation data obtained from the well logs. The 
horizontal axis represents the number of water 
saturation data points. In contrast, the vertical axis 
exhibits the water saturation data obtained from the well 
logs and those predicted by the model. The greater the 
overlap between the circular data points and the dashed 
lines, the closer the log-derived data and the model’s 
predicted data are to each other, reflecting that the 
model has higher accuracy.   

 

 
Fig. 12. Correlation coefficient between water saturation values obtained through well logs and those using RBF for training 

data 
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Fig. 13. Correlation coefficient between water saturation values obtained through well logs and those using RBF for testing data 

 

 
Fig. 14. Relative error for training and testing data of RBF 

 
Fig. 15. Comparison of predicted values of water saturation by RBF with water saturation data obtained through well logs for 

training data 
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Fig. 16. Comparison of predicted values of water saturation by RBF with water saturation data obtained through well logs for 

testing data 
 

The water saturation obtained from well logging data 
was successfully modeled using intelligent networks, 
yielding favorable results. The results from the 
intelligent methods employed in this research are 
presented in Table 3. As indicated, the RBF model has 
higher R values and lower AARD and RMSE values 
compared to the MLP model. This demonstrates that the 
RBF model is superior and has higher accuracy than the 
MLP model. 

 
Table 3. Statistical parameters of different estimators of 

water saturation 
Network 

Type 
Data Type 

R 
(fraction) 

AARD 
(%) 

RMSE 
(fraction) 

MLP Training Data 0.9766 30.21 0.0810 
 Testing Data 0.9739 33.24 0.0824 

RBF Training Data 0.9986 8.12 0.0028 
 Testing Data 0.9986 7.47 0.0024 

 
VII. CONCLUSIONS  

The following key results are obtained from this 
research: 

1) AI models are capable of effectively identifying the 
relationships and patterns between input and output 
parameters that have completely nonlinear 
relationships, providing accurate predictions of output 
values. As demonstrated in the present study, although 
the relationship between the water saturation and well 
logging data is entirely nonlinear, the AI models MLP and 
RBF can effectively recognize this nonlinear relationship 
and yield predictions with high R values and low AARD 
and RMSE values. 

2) The values of the statistical parameters for the R 
parameter, AARD, and RMSE for the MLP model are 
obtained as 0.9739, 33.24, and 0.0824, respectively. The 
values of these parameters for the RBF model are 
obtained as 0.9986, 7.47, and 0.0024, respectively. 

3) Considering the statistical parameters, although 
both models demonstrate acceptable accuracy in 
predicting the water saturation data using well logging 
data, it can be concluded that the RBF model is superior 
to the MLP model due to its higher R value and lower 
AARD and RMSE values. 

It is worth mentioning that the present study was 
conducted using well log data from a single oil carbonate 
reservoir. While the proposed ANN-based models 
demonstrate high predictive accuracy in this context, 
further validation using data from additional wells and 
reservoirs with varying lithological and petrophysical 
characteristics is recommended to fully assess the 
models’ generalizability. 
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NOMENCLATURE 

ANN Artificial neural network 
PSO Particle swarm optimization 
MLP Multi-layer perceptron neural network 
RBF Radial basis function neural network 
AI Artificial intelligence 
R Correlation coefficient 
AARD Average absolute relative deviation 
RMSE Root mean square error 
 MSE Mean squared error 
 SVM Support vector machine 
 BPSO Binary particle swarm optimization 
GR Gamma ray log  
 RT Resistivity log 
 SP Spontaneous potential log 
 CNL Compensated neutron log 
 MSFL Micro-spherically focused log 
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