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ABSTRACT 
Drilling fluid is among the most important requirements for drilling oil, gas, and geothermal wells. Many drilling challenges 

are directly or indirectly related to the drilling fluids; therefore, optimizing the drilling fluid has a significant effect on the 
quality of drilled wellbore, and the risk of drilling operations. In this paper, it is tried to develop deep learning algorithms to 
optimize drilling fluid properties to minimize the possibility of occurrence of possible problems in one target field in the Middle 
East. This paper deals with the method of artificial intelligence for the first time to investigate the possibility of estimating 
optimum drilling fluid parameters using drilling and geological parameters to minimize problems- without considering the 
location of the target wells. Two artificial intelligence algorithms ‘’LSSVM’’ and ‘’MLP-FFBP’’ were used to train the machine to 
optimize drilling fluids (such as mud density, yield point, plastic viscosity, etc.) to minimize drilling fluid challenges such as 
stuck pipe, tight hole, formation influx, and even loss circulation. Results showed that for optimizing drilling fluid parameters 
in a newly drilled well, the developed AI networks have good capability to estimate parameters for some drilling fluid 
parameters such as mud density, plastic viscosity, water percentage, and API filtration properties with the accuracy of more 
than 95% for train and more than 85% for test data. Moreover, results showed that drilling fluids have a direct effect on the 
tight holes and stuck incidents.  
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I. INTRODUCTION 

Drilling fluid is one of the most important parts of any 
drilling operation in the oil and gas industry. Most 
drilling challenges are related to the used drilling fluids 
such as pipe stuck, wellbore collapse, etc. Therefore, 
designing a proper drilling fluid based on the well type 
and condition is critical (API, 2021). Therefore, many 
researchers have tried to improve the drilling fluid 
properties using different experimental and 
mathematical studies. Nowadays, by improving Artificial 
Intelligence and Machine Learning sciences, drilling fluid 
optimization can be advanced to the next generation 
level. 
In this study, one of the most significant onshore fields in 
the Middle East is selected and studied. All the drilling 
and drilling fluids data of several drilled 17 ½'' hole 
sections in 10 wells in target field were gathered. Then, 
it is tried to optimize drilling fluid using machine 
learning in order to minimizing drilling problems such as 
the tight hole, stuck pipe, gain and formation kicks and 
loss of circulation. 

An artificial neural network (ANN) consists of a set of 
neurons and unidirectional connections between them, 
which enables the imitation of the human brain’s ability 
to detect patterns and learn relationships within data. 
Associated with each neuron is an activation function 
and each connection between two neurons has a weight 
assigned that controls the influence of the first neuron on 
the second one. While the neurons represent the basic 
computation units of an ANN, the weighted connections 
between them allow the modeling of complex 
relationships (Yang and Yang, 2014). 
Thus far, articles on estimating drilling fluid parameters 
from fluid-dependent parameters have been conducted 
using artificial intelligence techniques. For instance, with 
ANFIS (adaptive neuro-fuzzy inference system), PSO-
ANFIS (particle swarm optimization-adaptive neuro-
fuzzy inference system), LSSVM-GA (least square 
support vector machine-genetics algorithm), and RBF 
(radial basis function) algorithms have been utilized to 
estimate the density of drilling fluid at high-pressure 
high-temperature wells, which have also achieved high 
accuracy results (Karimian et al., 2022). In another 
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paper, Ahmadi developed an artificial intelligence-based 
method for the determination of the density of drilling 
fluids in good conditions when essential experimental 
data are unavailable (Ahmadi, 2016). In this paper, all 
the geological and drilling parameters, such as  mud loss 
rate, rate of penetration, Wash and Ream Time criteria 
time, and quality of drilling, Stuck, affecting the wellbore 
stability and drilling challenges, including depth, weight 
on bit, Drill pipe rotating speed, Standpipe pressure, 

drilling torque, mud flow rate, bit type, drilling motor 
type, bottom hole assembly type, bit nozzles, lithology, 
flow line temperature, in 10 wells have been used to find 
the algorithms to estimate drilling fluid parameters.  
Many researchers have studied drilling optimization and 
reduction in drilling problems using drilling fluid 
properties in recent years. Some of the mentioned 
researches are summarized in Table 1. 

 
Table 1. Researches for drilling optimization and reduction in drilling problems using drilling fluid properties 

Authors Type of study Kernel Function Output Parameters Input Parameters 

Siruvuri et 
al., (2006) 

Prediction of 
differential pipe 

sticking 
GFFN 

Differentially 
stuck or no stuck 

Water based sticking model: differential pressure, hole 
depth, API fluid loss, MBT, chlorides, total hardness, 

PV, YP, gels, inhibitor concentration, pH, 
Oil based sticking model: PV, YP, gels, emulsion 

ability, HPHT fluid loss, lime, chlorides, oil water 
ratio, hole depth 

Miri et al., 
(2007) 

Prediction of 
differential pipe 

sticking 

MLP 
RBF 

Stuck index 
Differential pressure, hole depth, API fluid loss, solid 
percent, mud filtrate viscosity, plastic viscosity, yield 

point, 10 sec and 10 min gel strength 

Murillo et 
al., (2009) 

Prediction of 
pipe 

sticking 
mechanism 

- 
Stuck pipe 
condition 

Measured depth, TVD, bit flow rate, 10 sec and 10 min 
gels, mud weight, PV, YP, calcium filtrate, chloride 

filtrate, torque, circulating pressure, WOB, drag, bit 
size, BHA, ROP, RPM 

Shadizadeh 
et al., (2010) 

Predicting stuck 
pipe 

FFBPN 
probability Stuck 

pipe 
Differential pressure, geometric factor, pH, YP, PV gel strength. 

Alireza et 
al., (2011) 

Loss circulation FFBPN 
Amount of lost 

circulation 

Well depth from ground surface and from sea level, 
drilled depth, drilling time, length of open hole 

section, asmari formation top from ground surface, 
northing, easting of well, bit size, average output of 
pump, average pump pressure, mud weight, solid 

percent of mud, mud fluid loss, amount of loss 
circulation, amount of loss of circulation in two days 

Al-Baiyat 
and Heinze 

(2012) 

Predicting stuck 
pipe before its 

occurrence 
FFBPN Stuck index 

Well direction characteristics, mud properties and 
drilling parameters 

Jahanbakhshi 
et al., (2012) 

Predicting stuck 
pipe before its 

occurrence 
FFBPN Stuck index 

Differential pressure, hole depth, mud filtrate viscosity, 
fluid loss, solid content, BHA length, still pipe time, 

hole size, 10 sec and 10 mins gels, PV, YP 

Chamkalani 
et 

al., (2013) 

 Stuck pipe 
predicting 

RBF 
Differential, 
mechanical, 
non-stuck 

TVD, fluid loss, differential pressure, formation loss, cross section 
of annulus, ROP, RPM, measured depth, angle of well, calcium 

concentration, solid percent, water oil ratio, oil water ratio, open 
hole, formation pressure, drill collar (OD), drill collar length, 10 

sec/ 10 mins gels, PV, YP, flow rate, pH 

Razi et al., 
(2013) 

Rheological 
properties of 

WBM 
FFMLP 

Plastic viscosity 
and yield point 

Temperature and concentration 

Zhu et al., 
(2013) 

Model of pipe 
sticking 

prewarning 
BPNN Stuck index 

Sticking point depth, WOB, revolution, displacement, 
pump pressure, mud density, funnel viscosity, sand 

content, thickness of mud cake, water loss 

Jahanbakhshi 
and 

Keshavarzi 
(2015) 

Prediction of the 
amount 

of loss circulation 

Gaussian 
Kernel 

and 
Polynomial 

Kernel 
functions 

Amount of 
loss 

circulation 

 
Hole depth, porosity, formation permeability, differential 

pressure, ROP, ECD, pump pressure (avg), temperature in loss 
interval, PV, YP, 10 sec/10 min gels, 

Solid percent, Mud filtrate viscosity, API fluid loss, Minimum 
horizontal stress, Tensile & Uniaxial compressive strength, 

Natural fracture orientation, Young modulus 

Shadravan 
et al., (2015) 

Mud design BP 

Rheological 
Properties 

(RPMs of 600, 
300, 200, 

100, 6 & 3) 

Fluid density, ingredient A content, temperature 

Behnoud 
far,and 

Hosseini, 
(2016) 

 
Prediction of loss 

circulation  
FFBPN 

Amount of loss 
circulation 

Pump pressure, depth, mud flow rate, mud weight 

Manshad, et 
al., 

(2017) 

 
Prediction of loss 

circulation  
RBF Amount of loss 

Present driller depth of well in the day of study, level in the day of 
study, Well trajectory, Drilling time, Length of open hole Present 

depth of well from sea 
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The backpropagation algorithm is a machine learning 
algorithm that is specifically used to train feedforward 
neural networks. There are backpropagation 
generalizations for other artificial neural networks and 
their function in general. In an artificial neural network, 
this algorithm calculates the cost slope according to the 
network weight for a single input-output example, it 
provids a simple direct calculation of the slope for each 
weight it performs (Wythoff, 1993). 
The Multi-Layer perceptron is the most known and most 
frequently used type of the neural networks. On the most 
occasions, the signals are transmitted within the 
network in solely one direction: from input to output. In 
this type architecture which is called feedforward, there 
is no loop, and the output of each neuron does not affect 
the neuron itself. The power of the multilayer perceptron 
comes precisely from nonlinear activation functions 
(Bahri et al., 2021). 
In machine learning, support vector machines -known as 
support-vector networks- are supervised learning 
models with support vector learning algorithms (kernel 
properties), which analyze data for classification and 
analysis of regression. The support vector machine 
training algorithm creates a model that assigns new 
samples to one category or another and converts it into 
an impermissible binary vector (Alimoradi et al., 2012). 
The studied drilling fluid properties for this research are 
summarized in Table 2. 
The drilling mud parameters that were used as artificial 
neural network outputs in this paper are as follows: 

1. Mud Weight is the density of drilling fluid per 
unit volume. This is one of the most important 
properties of the drilling fluid as it controls the 
formation pressure and also contributes to the 
stability of the wellbore (Hughes, 2006). 

2. Yield Point or chemical resistance to the initial 
flow of the fluid is the required stress for fluid 
movement. It is highly related to the capability 
of the drilling fluid to carrying the cuttings to the 
surface and efficiency of hole cleaning (Hughes, 
2006). 

3. Plastic Viscosity is fluid physical resistance to 
flow. Plastic viscosity is highly related to the 
solids in the drilling fluid. In addition, the loss of 
frictional pressure, known as Standpipe 

pressure, is directly related to this parameter. In 
order to reduce the plastic viscosity of the fluid, 
the solid content must be decreased using solid 
control equipment or diluting practices while 
drilling (Hughes, 2006).  

Shear Stress is part of the surface tension with a cross-
section of fluids. On the other hand, natural stress is 
caused by the force vector component perpendicular to 
the cross-section of the fluid on which it operates 
(Cristianini and Taylor, 2000). Shear stress at 6 round 
per minute is called R6 and shear stress at 3 round per 
minute is called R3. These mentioned parameters are 
crucially important in hole cleaning specially in low flow 
rates. 
API Fluid Loss parameter is a result of standard fluid 
filtration test at low pressure (100 psi) and ambient 
temperature as per API13-B1 standard (API, 2021). 

4. KCl Percentage: Potassium chloride salt is one of the 
most common and effective shale inhibitors which are 
used widely in drilling fluids. It may have strong 
relationship with wellbore quality. 

5. The Methylene Blue Test is an experiment to determine 
the quantitative clay contents in a drilling fluid (Hughes, 
2006). 
All the mentioned drilling fluid properties will be 
measured and reported at rig site as daily routine 
testing. Therefore, all the data for 10 wells were gathered 
and used in this study. The lithology of drilled rocks in 
the mentioned hole section were mainly anhydrite, marl 
and carbonate rocks. It is worth mentioning that some 
other parameters such as bit type, rig type, stabilizer 
selection, etc. were not considered in this research. 

II. METHODOLOGY 

In this section, the input and output data of drilling and 
drilling fluids parameters were first investigated 
regarding the dependence of output parameters on input 
parameters for learning data series to remove the input 
parameters unaffected by machine learning using 
Principal Component Analysis (PCA). Then, two series of 
artificial neural networks were used, and their function 
was investigated to estimate the output parameters. The 
outputs are compared to actual outputs and error values 
were investigated.

 
Table 2. Description of drilling fluid properties for the research (Hughes, 2006) 

Row Drilling Fluid Parameter Parameter Type The Drilling Challenges Related to the studied parameters 

1 Mud Density Physical 
Loss of circulation, Kick and Gain from formations, Wellbore 
Stability Condition  

2 Yield Point Physical )Rheological( Hole Cleaning, Stuck pipe 

3 Plastic Viscosity Physical )Rheological( Hole Cleaning, Torque, and Drag, Stuck pipe 

4 R6 and R3 Dial Readings Physical )Rheological( Hole Cleaning, Stuck pipe 

5 API Filtration (API FL) Physical Wellbore Stability Condition, Stuck pipe, Tight Hole Condition 

6 KCl percentage Chemical Wellbore Stability Condition, Stuck pipe 

7 CLAY Content (MBT1) Chemical Wellbore Stability Condition, Hole Cleaning 

 

                                                           
1 Methylene Blue Test 
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A. Data Preparation 

The first part of which included 466 data from 34 wells 
at depths of 40 to 2204 meters, which reached 300 data 
after clearing unused data belonging to cementing days 
(which ROP1, speed of drilling pipe movement (RPM2), 
and WOB3 were zero). Table 3 lists the output 
parameters and the range of their changes in this 
dataset. 

B. Principal Component Analysis for data 

To properly understand the interaction between each 
input parameter and output parameters and to remove 
the input parameters unaffected by the outputs, it is 
required to investigate the numerical and statistical 
relationships of the parameters in the data. Principal 
Component Analysis (PCA) was used to investigate these 
relationships. In the first step, to remove the 
interdependent input parameters, this analysis is 
applied to the input parameters, which are inserted in 
Table 3 of the interaction between each input parameter 
for all observation data sets. In this analysis method, the 
obtained number range is between -1 and 1, with 1 
indicating the complete correlation between the two 
variables and the number -1 indicating a completely 
inverse correlation. Interstitial numbers show these two 
ratios relatively (positive numbers between 0 and 1 have 
a direct correlation, and negative numbers between 0 
and -1 have an inverse correlation).  

In table 4, having stuck is considered as 1, and not facing 
stuck is equal to 0. 
In the artificial neural network, the input parameters 
should not have a correlation square above 0.9 (i.e, 
90%,). With the results obtained from the Table 3, it is 
obvious that none of the parameters have a correlation 
coefficient of 0.9 or more. Therefore, the parameters are 
independent, and none are required to be emitted. 
In the next step, to remove input parameters unaffiliated 
with output parameters, analysis was performed on 
input and output parameters, in Table 5, the interaction 
between input and output parameters for data is 
observed. 
Using the Table 4, the Azimuth parameter of wells can be 
removed because they have a zero correlation coefficient 
with the outputs, which means that they do not have a 
significant relationship with the outputs, and as a result, 
entering them into the artificial neural network does not 
help to estimate the output parameters. 
In the next step, to find the output parameters depending 
on each other, the analysis was performed on the data of 
the output parameters, and the results of the analysis are 
listed in Table 5. 
Using Table 6, the two parameters Mud Weight and 
Plastic Viscosity have a correlation coefficient of 
approximately 90%. Therefore, it is predicted that it is 
possible to estimate them with accuracy percentage. The 
same is true of the two parameters R6 and R3. 

 
Table 3. List of output parameters and their range of changes in the data of this article 

Row Output’s Parameter Parameter’s Unit Parameter’s range of changes 
1 Mud Weight PCF (pounds per cubic feet) 66-122 
2 Yield Point lb./100ft² 2-39 
3 Plastic Viscosity cP (centi Poise) 1-47 
4 R6 and R3 - 1-19 
5 API Filtration (API FL) cc/30min 0-130 
6 KCl Content % 0-6 
7 Clay content from Methylene Blue Test (MBT) Pound per bbl. 2.5-30 

Table 4. Interaction input parameters

Parameter 
Measured 

Depth 
weight 
of bits 

Round 
per 

Minute 

STANDPIPE 
PRESSURE 

torque 
Mud 
Flow 
rate 

ROP 
Lithology 

Type 

Mud 
Loss 
Rate 

Wash & 
Ream 
Time 

stuck 
Flowline 

temperature 

Measured 
Depth 

1 -0.244 -0.132 0.043 -0.056 
-

0.205 
-0.679 0.517 0.208 0.051 0.061 0.576 

weight of bits -0.244 1 0.599 0.544 0.435 0.583 0.375 -0.275 0.081 0.07 0.031 -0.105 

Round per 
Minute 

-0.132 
 

0.599 1 0.807 0.777 0.756 0.378 0.078 0.092 0.137 0.055 -0.12 

Stand pipe 
Pressure 

0.043 0.544 0.807 1 0.641 0.742 0.174 0.153 0.111 0.171 0.017 0.063 

torque -0.056 0.435 0.777 0.641 1 0.633 0.314 0.077 0.052 0.052 0.013 -0.14 

Mud Flow rate -0.205 0.583 0.756 0.742 0.633 1 0.418 0.041 0.12 0.179 -0.027 -0.08 

ROP -0.679 0.375 0.378 0.174 0.314 0.418 1 -0.31 -0.07 0.016 -0.032 -0.475 

Lithology Type 0.517 -0.275 0.078 0.153 0.077 0.041 -0.31 1 0.149 0.054 0.014 0.368 
Mud Loss Rate 0.208 0.081 0.092 0.111 0.052 0.12 -0.07 0.149 1 0.029 0.048 0.116 

Wash & Ream 
Time 

0.051 0.07 0.137 0.171 0.052 0.179 0.016 0.054 0.029 1 0.12 0.087 

stuck 0.061 0.031 0.055 0.017 0.013 
-

0.027 
-0.032 0.014 0.048 0.12 1 0.051 

Flowline 
temperature 

0.576 -0.105 -0.12 0.063 -0.14 -0.08 -0.475 0.368 0.116 0.087 0.051 1 

 
 

                                                           
1. Rate of penetration (while drilling) 
2. Round per minute 
3. Weight on bit 
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Table 5. Interaction between input parameters and output parameters 
 Parameter Mud Weight Yield Point Plastic Viscosity R6 R3 API Fi KCl MBT 

Depth 0.587 0.071 0.643 -0.354 -0.343 -0.581 0.383 -0.305 

weight of bits -0.117 -0.092 -0.198 0.157 0.144 0.006 -0.04 -0.024 
Round per Minute -0.129 -0.09 -0.165 0.027 0.018 -0.073 0.025 -0.157 

Stand pipe Pressure 0.005 -0.013 -0.021 0.002 -0.01 -0.186 0.125 -0.068 

torque -0.068 -0.073 -0.129 0.025 0.003 -0.111 0.025 -0.043 
Mud Flow rate -0.24 -0.006 -0.225 0.172 0.172 0.069 0.088 0.002 

ROP -0.471 -0.057 -0.475 0.243 0.228 0.432 -0.359 0.211 
Bit Type -0.089 0.03 -0.048 0.085 0.085 -0.006 0.169 -0.134 

Motor Type -0.01 -0.021 0.027 -0.076 -0.082 -0.04 0.093 0.107 

Bottom Hole Assembly 
Type 

0.059 -0.168 -0.03 -0.02 -0.025 -0.008 -0.008 0.051 

Bit Nozzle number 0.402 0.028 0.441 -0.16 -0.132 -0.203 -0.086 -0.083 

Bit Nozzle size 0.321 0.128 0.388 -0.102 -0.076 -0.173 0.092 -0.094 

Lithology Type 0.156 0.076 0.282 -0.226 -0.224 -0.252 0.092 -0.167 

Mud Loss Rate 0.097 0.093 0.145 -0.033 -0.036 -0.087 0.052 -0.028 

Wash & Ream Time 0.025 0.034 0.044 0.068 0.06 0.014 0.167 -0.045 

azimuth 0 0 0 0 0 0 0 0 

Time of drilling 0.014 0.004 0.02 -0.042 -0.055 -0.045 0.077 0.036 
stuck 0.102 -0.002 0.081 0 0 -0.038 0.019 0.049 

Flowline temperature 0.607 0.006 0.619 -0.191 -0.153 -0.320 0.066 -0.252 

 

C. Data Normalization 

For the artificial neural network to find the conceptual 
patterns in a large data set, the input and output 
parameters values of the dataset must be in an equal and 
defined range, for the effect of all of them on the network 
is the same. For this purpose, one of the common 
techniques of statistical studies called normalization was 
used. Using this method, the data falls into a new range. 
In the newly obtained set of numbers, the maximum 
value of the initial data is scored as 1 and the minimum 
value is scored by -1. The used normalization equation 
is: 
 

𝑋𝑛𝑒𝑤 =  (𝑋𝑜𝑙𝑑 − 𝑋𝑚𝑖𝑛)/(𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)                     (1) 
 
In the above equation, Xmin has the minimum data value, 
Xmax has the maximum data value, Xold and Xnew are 
the primary and converted values of each data, 
respectively. This transfer formula affects all input and 
output parameters of the data set to make the input and 
output data to normalize the inputs the artificial neural 
network. 
 

2.4. Multi-Layer Perceptron (MLP) Algorithm 

The multilayer perceptron consists of a system of simple 
interconnected neurons, or nodes, as illustrated in Fig. 1, 
in which a model representing a nonlinear is mapping 
between an input vector and an output vector. The nodes 
are connected by weights and output signals, which are 
a function of the sum of the inputs to the node modified 
by a simple nonlinear transfer, or activation, function. It 
is the superposition of many simple nonlinear transfer 
functions that enables the multilayer perceptron to 
approximate extremely non-linear functions. If the 
transfer function were linear then the multilayer 
perceptron would only be able to model linear functions. 
Due to its easily computed derivative, a commonly used 

transfer function is the logistic function. The output of a 
node is scaled by the connecting weight and fed forward 
to be an input to the nodes in the next layer of the 
network. This implies a direction of information 
processing; hence, the multilayer perceptron is a feed-
forward neural network. The architecture of a multilayer 
perceptron is variable but, in general, will consist of 
several layers of neurons. The input layer plays no 
computational role but merely serves to pass the input 
vector to the network. The terms input and output 
vectors refer to the inputs and outputs of the multilayer 
perceptron and can be represented as single vectors, as 
shown in Fig. 1. A multilayer perceptron may have one 
or more hidden layers and finally an output layer (Bahri 
et al., 2021). 
 

 
Fig. 1. A multilayer perceptron with two hidden layers (Bahri 

et al., 2021) 

 

 

 



 

6 
Vol 2, No. 1 / Spring 2024 
 

 
Optimizing Drilling Fluid Properties … 

Table 6. Interaction between output parameters 
Parameter Mud Weight Yield Point Plastic Viscosity R6 R3 API Fi KCl MBT 
MUD WEIGHT 1 0.15 0.925 -0.185 -0.232 -0.334 -0.065 -0.179 

Yield Point 0.15 1 0.305 0.382 0.404 0.227 -0.158 0.306 

PLASTIC VISCOSITY 0.925 0.305 1 -0.156 -0.213 -0.315 -0.068 -0.147 

R6 -0.232 0.404 -0.213 1 0.953 0.456 -0.232 0.346 

R3 -0.185 0.382 -0.156 0.953 1 0.448 -0.247 0.345 

API Fi -0.334 0.227 -0.315 0.448 0.456 1 -0.432 0.367 

KCl -0.065 -0.158 -0.068 -0.247 -0.232 -0.432 1 -0.243 

MBT -0.179 0.306 -0.174 0.345 0.346 0.367 -0.243 1 

D. Support Vector Machine (SVM) Algorithm: 

SVM is one of the best-known techniques to optimize the 
expected solution. SVM was introduced by Vapnik as a 
kernel-based machine learning model for classification 
and regression tasks. The extraordinary generalization 
capability of SVM, along with its optimal solution and its 
discriminative power, has attracted the attention of data 
mining, pattern recognition, and machine learning 
communities in the last few years. SVM has been used as 
a powerful tool for solving practical binary classification 
problems. It has been shown that SVMs are superior to 
other supervised learning methods. Due to its good 
theoretical foundations and good generalization 
capacity, in recent years, SVMs have become one of the 
most used classification methods (Cristianini and Taylor, 
2000). 
The main motivation of SVM is to separate several 
classes in the training set with a surface that maximizes 
the margin between them. In other words, SVM allows 
for maximizing the generalization ability of a model. This 
is the objective of the Structural Risk Minimization 
principle (SRM) which allows the minimization of a 
bound on the generalization error of a model, instead of 
minimizing the mean squared error on the set of training 
data, which is the philosophy often used by the methods 
of empirical risk minimization (Syah et al., 2021). 
Despite the generalization capacity and many 
advantages of the SVM, they have some very marked 
weaknesses, among which are: the selection of 
parameters, algorithmic complexity that affects the 
training time of the classifier in large data sets, 
development of optimal classifiers for multi-class 
problems, and the performance of SVMs in unbalanced 
data sets (Syah et al., 2021). 
The support-vector network implements the following 
idea: it maps the input vectors into some high 
dimensional feature space Z through some non-linear 
mapping chosen a priori. In this space a linear decision 
surface is constructed with unique properties that 
ensure high generalization ability of the network. The 
technique of support-vector networks was first 
developed for the restricted case of separating training 
data without errors. In this article, we extend the 
approach of support vector networks to cover when 
separation without error on the training vectors is 
impossible. With this extension we consider the support-

vector networks as a new class of learning machine, as 
powerful and universal as neural networks (Cortes and 
Vapnik, 1995). 
 

 
Fig. 2. An example of a separable problem in a 2-dimensional 
space. The support vectors, marked with grey squares, define 
the margin of the largest separation between the two classes 

(Cortes and Vapnik, 1995) 

III. ESTIMATION OF DRILLING FLUID PARAMETERS BY 

MLP-BP & SVM ALGORITHM (TRAINING THE MACHINE) 

In this article, two artificial neural networks (SVM & 
MLP-BP) have been used to estimate the drilling fluid 
parameters. Selecting the data for training and testing 
stages have been done entirely randomly using standard 
random selection operators. The mean square error 
(MSE), mean absolute error (MAE), and mean 
correlation coefficient (R) of all artificial neural 
networks in each stage are almost the same. In the 
following Fig.s (Fig.s 3 to 8), the values of the mentioned 
three criteria for all the output parameters of the drilling 
fluid once with and once without applying the related 
output parameters are given: 
Fig.s 4 and 5 indicate that the mean correlation 
coefficient (R) in learning process for train data in both 
conditions (with and without applying the related output 
parameters) is near to one which is favorable. On the 
other hand, for test data, applying the related output 
parameters increases the accuracy of predictions (Fig. 
4). As shown in both Fig.s 4 and 5, plastic viscosity and 
mud weight have the best accuracy compared to other 
studied parameters.
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Fig. 3. Mean correlation coefficient (R) of the learning 
process for output parameters without applying other 

related estimated output parameters 

 

 

 
Fig. 4. Mean correlation coefficient (R) of the learning 

process for output parameters by applying other related 
estimated output parameters 

 

 
 

Fig. 5. Mean Square Error (MSE) of the learning process 
for output parameters without applying other related 

estimated output parameters 
 

Fig. 6. Mean Square Error (MSE) of the learning process for 
output parameters by applying other related estimated 

output parameters 

 

Figures 6 and 7 indicate that the mean square error 
(MSE) in the learning process for train data in both 
conditions (with and without applying the related output 
parameters) is near to zero which is favorable. In 
addition, for test data, applying the related output 
parameters decreases the error of predictions (Fig. 6). As 
shown in both Fig.s 6 and 7, plastic viscosity and mud 

weight have the best accuracy compared to other studied 
parameters in both train and test data sets. 
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Fig. 7. Mean Absolute Error (MAE) of the learning 
process for output parameters without applying other 

related estimated output parameters 

 

Fig. 8. Mean Absolute Error (MAE) of the learning 
process for output parameters by applying other 

related estimated output parameters 

 

Fig.s 8 and 9 indicate that the Mean Absolute Error 
(MAE) in learning process for train data in both 
conditions (with and without applying the related output 
parameters) is under 0.1, which is favorable. Moreover, 
for test data, applying the related output parameters 
decreases the error of predictions (Fig. 8). As shown in 
both Fig.s 8 and 9, API Fl (fluid loss) have the best 
accuracy compared to other studied parameters in both 
train and test data sets. 
 

A. Point to Point Validation (Testing the Machine) 

After completing the learning process by mentioned 
artificial neural networks (SVM and MLP), validation or 
feasibility study about the capability to estimating the 
drilling fluid parameters by those networks were 
investigated. At this stage, 10% of the drilling data that 
were randomly separated before the artificial neural 
network learning process were used to validate the 
networks. Therefore, in Fig.s 10 to 17, the difference 
between the mean estimated value by the networks and 
the actual value for each parameter are given and 
discussed. 
As the Fig. 10 indicates, the accuracy of prediction for 
mud weight parameter is high and consistent in the run 
tests. This accuracy can be related to the effects between 
plastic viscosity and mud weight, and resulting in better 
learning process of the machine. 
As the Fig. 11 indicates, the accuracy of prediction for 
yield point parameter is strong and consistent. In the run 
tests, only two points have unreasonable errors.  

As the Fig. 12 shows, the accuracy of prediction for 
plastic viscosity parameter is high and consistent in the 
run tests. This accuracy can be related to the effects 
between plastic viscosity and mud weight, and resulting 
in better learning process of the machine. 
As the Fig. 12 shows, the accuracy of prediction for R3 
parameter is weak in the run tests (same as R6), but 
trends are consistent. Further researches are required to 
investigate the accuracy of results.  
As it is shown in the Fig. 14, the accuracy of prediction 
for R6 parameter is weak in the run tests (same as R3), 
but trends are consistent. As it was predictable, the 
output data for R3 and R6 are in the same trend due to 
their similarity. Further researches are required to 
investigate the accuracy of results.  
As it is shown in the Fig. 16, the accuracy of prediction 
for KCl percentage is weak and inconsistent in the run 
tests. One assumption for this weak prediction for KCl 
percentage, can be justified for being a chemical 
properties and hardship to predict its effects on wellbore 
physical conditions.  
As the Fig. 15 indicates, the accuracy of prediction for 
API fluid loss parameter is high and consistent in the run 
tests. This accuracy was predictable as lowest MAE 
number was gained by this parameter (Fig.s 7 and 8). 
As it is shown in the Fig. 17, the accuracy of prediction 
for R6 parameter is fair enough but consistent in the run 
tests. 
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Fig. 9. Comparison of average results from two artificial neural networks compared to actual results for Mud Weight (density) 

 
 

 
Fig. 10. Comparison of average results from two artificial neural networks compared to actual results for Yield Point 

 
 

 
Fig. 11. Comparison of average results from two artificial neural networks compared to actual results for Plastic Viscosity 
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Fig. 12. Comparison of average results from two artificial neural networks compared to actual results for R3 

 
 

 
Fig. 13. Comparison of average results from two artificial neural networks compared to actual results for R6 

 
 

 
Fig. 14. Comparison of average results from two artificial neural networks compared to actual results for API Fluid Loss 
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Fig. 15. Comparison of average results from two artificial neural networks compared to actual results for KCl Concentration 

 
 

 
Fig. 16. Comparison of average results from two artificial neural networks compared to actual results for Clay Content (MBT) 

 

  
IV. CONCLUSIONS 

In this paper, we tried to implement the method of 
machine learning to investigate the possibility of 
estimating optimum drilling fluid parameters using 
drilling and geological parameters to minimize 
problems- without considering the location of the 
target wells. Two artificial intelligence algorithms 
‘’LSSVM’’ and ‘’MLP-FFBP’’ were used in this study to 
optimize drilling fluids (such as mud density, yield 
point, plastic viscosity, etc. Results showed that for 
optimizing drilling fluid parameters in a newly drilled 
well, the developed AI networks have good capability 
to estimate parameters for some drilling fluid 
parameters as follows: 
 Considering the quantity of used data, for most 

studied drilling mud parameters such as Mud 

Weight (Density), Plastic Viscosity, Water, and 

API Fluid Loss (both optimal and non-optimal), 

the network has a good performance and high 

capability to estimate parameters. 

 

 

 In the field of point-to-point validation, if the 

previous information is available from the well, 

for most parameters the network has a good 

performance. 

 Considering dependency of the two parameters 

Mud Weight and Plastic Viscosity have a 

correlation coefficient of approximately 90%, it 

is predicted that it is possible to estimate them 

with high accuracy percentage. 

 Using the trained machines in this research, the 

drilling parameters along with favorable 

conditions- such as having no stuck and tight 

hole, loss circulation and gain- can be given to 

the machine as input and required drilling fluid 

parameters for reaching these conditions are 

predicted with error values of less than 5% for 

train and 15% for test data. 
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NOMENCLATURE 

ANFIS = Adaptive neuro-fuzzy inference system 
ANN = Artificial neural network  
API = American Petroleum Institute 
cP = Centi-Poise 
FL = Filtration 
LSSVM = Least square support vector machine 
LSSVM-GA = Least square support vector machine-
genetics algorithm 
MBT = Methylene Blue Test 
PCF = Pounds per cubic feet 
PSO-ANFIS = Particle swarm optimization-adaptive 
neuro-fuzzy inference system 
RBF = Radial basis function 
ROP = Rate of penetration 
MAE = Mean absolute error 
MSE = Mean square error  
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