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ABSTRACT 
Errors in measured data could impact the offline optimizations or online control systems, leading to potentially uneconomical 

or unsafe process conditions. To address this issue, data reconciliation methods are introduced to enhance the data as much as 
possible. In this regard, the existence of non-random errors is challenging. This article debates the use of conventional sum of 
squares objective function in the case of presence of non-random errors. It shows how a robust estimator such as the maximum 
likelihood ameliorate the reconciliation. The robustness of the new objective function was assessed using simulated data. 
Results indicate that the sum of errors between real simulated data of flowrates and their estimation counterparts decreases 
from 124% to 27% in the case of a gross error in one stream, when robust objective function is manipulated. Even if no non-
random error exists, it is shown that robust estimator could result in better data reconciliation, if optimum parameters are 
chosen for the robust objective function.  
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I.  INTRODUCTION 

Reliable and accurate process measurements are 
essential for its controlling, simulation, and management. 
However, measurements in mineral processing plants are 
always subjected to various types of errors, including 
random errors that are distributed independently with a 
mean of zero, systematic errors that occur in a non-zero 
mean distribution, and gross errors that are rare and do 
not follow a normal distribution. Gross errors are 
typically caused by non-random events such as leaks, 
measurement instantaneous deviations, and instrument 
failures. Consequently, measurements from an industrial 
circuit do not always conform to the law of mass 
conservation. Therefore, performance indices such as 
recovery are misestimated leading to bad practice of 
factory management. Data reconciliation is a method for 
correcting and optimally adjusting measured data such 
that the adjusted values deviate minimally from the 
measured data while still adhering to the law of 
conservation of mass and other physical constraints. The 
traditional approach to data reconciliation is based on the 
least squares error problem, which assumes no non-
random errors are present (Hodouin, 2011; Mular et al., 
2002; Bagajewicz, 2010). Data reconciliation is a 
constrained optimization problem that aims to enforce  
 

 
model constraints, such as mass balance, on the data to 
minimize the discrepancy between the estimates and 
measured data (Narasimhan et al., 1999; Romagnoli 
et al., 1999). The optimization function used is as follows 
(Sbárbaro et al., 2010): 

 

Min 𝐽:  𝐽(𝑋) = ∑(
𝑥𝑖−𝑥𝑖

𝜎𝑖
)
2
                                                     (1) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:𝑀�̂�𝑖 = 0 
 

In Eq. (1), �̂�𝑖  represents the matrix of the estimated 
values, including both the estimated values for 
unmeasured variables and corrected values for measured 
variables. 𝑥𝑖  also represents the matrix of measured 
values, while 𝜎𝑖 denotes the standard deviation of the 
measured data. Variable M represents the circuit 
connectivity matrix that illustrates the flow of streams 
into the circuit (Sbárbaro et al., 2010). 

The fundamental assumption of data reconciliation is 
that there are no systematic errors, and the lower the 
variance of a variable, the higher its precision, which 
requires less correction during the reconciliation process. 
However, this assumption may not hold when a variable 
has non-random (systematic or gross errors) 
(Albuquerque et al., 1996). Therefore, the correction of a 
stream variable is based on its variance, which indicates 
precision, rather than accuracy. Consequently, a stream 
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containing a non-random error can propagate errors in 
all the other streams, and the reconciled data may be 
worse than the measured data and deviate further from 
the true values. Hence, robust data reconciliation is 
necessary in such cases (da Cunha et al., 2021). Robust 
estimation uses a specialized objective function (other 
than the sum of the squares of errors) for minimization. 
Owing to its mathematical nature, this objective function 
is less sensitive to deviations from ideal assumptions 
regarding errors, particularly outlying data. An important 
type of robust estimator is the maximum likelihood 
estimator (Llanos et al., 2015). For example, a function 
used for data reconciliation operations using robust 
methods is as follows (Jin et al., 2012): 

 

Min∑ 𝜌(
𝑥�̂�−𝑥𝑖

𝜎𝑖

𝑛
𝑖=0 , 𝑢) = ∑ 𝜌(𝑟𝑖 , 𝑢)

𝑛
𝑖=0                                              (2) 

Subject to: 𝐹(𝑥, 𝑢) = 0 
 

Vector 𝑟𝑖 represents the residual of the measured 
variable 𝑥𝑖 , whereas u contains the parameter estimates. 
The model constraints for data reconciliation during 
steady-state conditions are expressed through the 
functions F. The estimator ρ belongs to a series of robust 
estimators whose performance in detecting gross errors 
has been reported in numerous articles, such as the Kong 
robust estimator (Mingfang et al., 2000), weighted least-
squares robust estimator (Zhang et al., 2010; Korpela, 
2016; Dennis et al., 1978), and correlation estimator 
(Llanos et al., 2015). The Huber estimator is also important 
as it combines least-squares and minimum absolute 
deviation methods to provide a robust data estimate by 
reducing the bias resulting from gross errors (da Cunha et 
al., 2021; Huber 1992). Another robust estimator is the 
Cauchy estimator, which belongs to the class of probability 
density functions known as the Cauchy-Lorentzian 
distributions. The Cauchy function is often used in robust 
statistics and gross error detection, owing to its sensitivity 
to gross error values (Zhang et al., 2015; Lingke, 2006; Rey, 
2012; Özyurt et al., 2004; Prata et al., 2010). Jin et al. 
(2012) introduced the following function for robust 
estimator ρ of Eq. (2): 

 

(3) 𝜌(𝑟) =

{
 
 

 
 𝑐

2

6
(1 − (1 − 𝑎

𝑟2

𝑐2
)

3

)     𝑖𝑓|𝑟| ≤ 𝑐

𝐴 𝑙𝑛
𝑟2

𝑐2
+ 𝐵                        𝑖𝑓|𝑟| ≥ 𝑐

 

Where A and B are defined as follows: 

(4) 𝐴 =
(𝑐2𝑎(1 − 𝑎)2)

2
 

(5) 
𝐵 =

(𝑐2(1 − (1 − 𝑎)3))

6
 

In these equations, a is a tuning constant with a value 
ranging from 0 to 1, and c is a critical value between 

1.645 and 3.090. If |𝑟| ≤ 𝑐, there is no gross error in the 
measurement. However, |𝑟| ≥ 𝑐  indicates the presence of 
at least one gross error. 

Although different robust estimators are introduced in 
the literature, their comparison to conventional least 
square objective function has never been reported on a 
real dataset, as such dataset didn’t exist. In this paper, for 
the first time to the authors’ knowledge, such dataset is 
simulated and the comparison become possible. Besides, 
a minor modification to one of the robust estimators is 
implemented to enhance its ability to overcome the non-
random error. 

The influence function is often utilized to evaluate the 
impact of M estimators. By comparing the Huber, Cauchy, 
and Jin influence functions, it was determined that the 
effect of gross errors diminishes for the Cauchy estimator, 
showing a gradual decrease in the penetration of the 
influence function in the region of relative errors greater 
than 1.75. The effect of gross errors remains constant for 
the Huber estimator, with the value of the influence 
function unchanged in the region of relative errors 
greater than 0.1. As for the Jin estimator's influence 
function, as the relative residual increases, the calculated 
value of the influence function initially rises, then 
decreases. When the relative residual is greater than 0.3, 
the value of the influence function approaches zero. 
Therefore, the effect of gross errors can be more 
effectively mitigated compared to the Huber and Cauchy 
estimators. Thus, the Jin objective function exhibits 
greater robustness than the Huber and Cauchy functions 
(Jin et al., 2012). 

II. RESEARCH METHODOLOGY 

One of the significant challenges in investigating 
various data reconciliation methods is that the estimated 
data are compared to the measured data, which are prone 
to errors, especially in the presence of non-random 
errors, making this comparison unreliable. Data 
reconciliation could only be realy validated when real 
data are available. However, if real data are available, 
data reconciliation will be unnecessary. This 
contradiction makes it practically impossible to validate 
the results of the data reconciliation. To address this 
contradiction, this study suggests using artificial data. 
Artificial data were created by introducing disturbances 
into hypothetical true balanced data, transforming them 
into imbalanced real data with random errors, on which 
reconciliation is done. Thus, by having true primary 
balanced data, data reconciliation methods can be 
validated. 

In this study, a hypothetical circuit with four nodes 
and seven streams was used to generate artificial data for 
the flow rates and grades, which were considered to be 
"true values", as shown in Table 1 (unattainable in 
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reality). Such a circuit could refer to a mixer, crusher, 
classifier 1, and classifier 2. Additionally, to obtain 
artificially disturbed data (used as measured unbalanced 
data), relative variances of 12% for flows and 15% for 
grades were assumed, based on the assumption that 
repeated sampling in a large number of samples would 
result in such variances. Relative variance is a statistical 
concept denoting the variation of a variable relative to its 
mean. It is often expressed as a percentage, indicating the 
variability of the variable around its mean. The absolute 
variance for each data point was calculated based on 
these relative variances and presented in Table 1. 

 

𝐶𝑉𝑥 =
𝑆𝐷𝑥

�̅�
 

 

                                                     (6) 

Where, 𝐶𝑉𝑥  represents the relative variance of variable 
X, 𝑆𝐷𝑥  represents the standard deviation of variable X, 
�̅� represents the mean of variable X. 

To make the data more realistic, white noise was 
added to perfectly balanced data, using the true value as 
mean and the variance of the true value as the required 
variance for generating a random number. Generation of 
such noisy data were done 100 times for each point and 
the average and standard deviation of these 100 vlaues 
were obtained. The average value was assumed as the 
measured value for that point with known standard 
deviation obtained from the repetition. Thus, generated 
data represented "real values" measured in the plant 
circuit, which are unbalanced (Table 2). Data 
reconciliation studies were conducted on these data using 
both the conventional and the robust method of Jin, with 
the objective function of Equations 3–5, in different 
scenarios with or without gross errors. The study 
revealed that using a power of two for r in equations 3 to 
5 yielded better results than using a power of one; 
therefore, the objective function was modified 
accordingly. Coding of the objective function and 
constraint function, as well as constrained optimization, 
was performed using MATLAB software. 

 

 
Fig. 1. Hypothetical flowsheet 

For this circuit, a connectivity matrix has been 
prepared. In this matrix, corresponding to the nodes and 
streams of the circuit, there are rows and columns, 
respectively, and the elements of this matrix are 0, 1, and 
-1. In each row, corresponding to a node, the streams 
entering the node are indicated by 1, those exiting the 
node by -1, and those not connected to the node by 0. The 

connectivity matrix for the assumed circuit (Fig. 1) is as 
follows: 

𝑀 = [

1 −1 0 1 0 1 0
0 1 −1 0 0 0 0
0 0 1 −1 −1 0 0
0 0 0 0 1 −1 −1

] 

 

Table 1. Artificially Generated Data Before Introducing Noise 
and Their Absolute Variances 

 
 

Table 2. Artificially Generated Data after Introducing Noise 
(Representation of Measured Data) 

 

III. RESULTS AND DISCUSSION 

A. DATA RECONCILIATION OF A BILINEAR 

PROCESS USING THE CONVENTIONAL METHOD IN 

THE ABSENCE OF GROSS ERRORS 

The information regarding the outcomes of the data 
reconciliation process for the bilinear flotation procedure 
is presented in Table 3. This table illustrates the 
discrepancies between the original balanced data (which 
represents the true values of the variables) and the 
reconciled values. The final column indicates the sum of 
the absolute differences between the measured or 
reconciled data and the true values. A smaller value in 
this column indicates that the data are closer to the true 
values. The decrease in the percentage of error for the 
reconciled data as compared to the measured data 
demonstrates the ability of the data reconciliation 
method to approach the true values of the variables 
starting from the measured data. As demonstrated in 
Table 3, the highest error percentage is related to the flow 
rate and grade of stream 4, which is a recirculation 
stream. Overall, the error rate in all estimates was 
relatively low, and in this case, the reconciliation process 
using the least-squares method reduced the sum of 
absolute errors from 23.87% to 14.94% in the flow rate 
and from 24.25% to 13.70% in the grade. This decrease in 
deviation from the true data occurrs simultaneously with 
adhesion to mass conservation constyraints.  

Variable Stream 1 Stream 2  Stream 3 Stream 4 Stream 5 Stream 6 Stream 7

Flowrate (t/h) 109 144 144 15 129 20 109

 Absolute

 variance of

Flowrate
13.08 17.28 17.28 1.8 15.48 2.4 13.08

Grade (g/t) 21 24.84 24.84 47.69 22.18 28.61 21

 Absolute

variance of grade
3.15 3.73 3.73 7.15 3.33 4.29 3.15

Variable Stream 1 Stream 2  Stream 3 Stream 4 Stream 5 Stream 6 Stream 7

Flowrate (t/h) 108.19 147.31 151.34 15.59 118.51 20.38 110.96

 Standard

 Deviation of

flow rate
12.84 18.11 13.78 1.37 14.68 1.95 13.90

Grade (g/t) 21.55 25.97 26.68 49.29 21.57 28.08 20.644

 Standard

 Deviation of

grade
2.33 4.06 3.94 7.78 2.72 3.57 2.62
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Table  3. Comparison of the deviation between measured and reconciled data from the true values in conventional 
reconciliation in the absence of gross error 

 
 

B. DATA RECONCILIATION OF A BILINEAR 

PROCESS USING THE ROBUST METHOD IN THE 

ABSENCE OF GROSS ERRORS 

Table 4 shows the outcomes of the data reconciliation 
process for a bilinear system using Xie's robust approach 
in the absence of a gross errors and when measurements 
were available from all flowrates and grades. The results 
revealed that the percentage of difference in the 
reconciled flow rates compared to the true flow rates in 
all streams was less than 5% and was almost negligible. 
Moreover, the total percentage of difference in the 
reconciled flow rates compared with the true flow rates 
(8.73%) was significantly lower than the total percentage 

of difference in reconciled flow rates compared with the 
true flow rates (14.94%) in the conventional method, 
indicating the higher accuracy of the robust method in 
data reconciliation, even in the absence of gross errors. 
By examining the plots in Fig.s 2 and 3, which illustrate 
the reconciled data using the robust Xie method and the 
conventional method, as well as the true flow rates and 
reconciled flowrates, it can be observed that even in 
situations without gross errors, the least-squares method 
is not optimal. The maximum likelihood method (used in 
the robust method) can provide a closer approximation to 
the true data. 

 
Table  4. Comparison of the discrepancy between measured and reconciled data from the true values in robust 

reconciliation in the absence of gross error 

 
 

Variable Stream 1 Stream 2  Stream 3 Stream 4 Stream 5 Stream 6 Stream 7

 Total

 percentage

error

True flowrate (t/h) 109 144 144 15 129 20 109

Reconciled flowrate (t/h) 108.44 145.24 145.24 16.7 128.54 20.1 108.44

Percentage error of the reconciled flowrate compared to 

the true flowrate (%)
0.51 0.86 0.86 11.33 0.36 0.50 0.51 14.94

Measured flowrate  (t/h) 108.19 147.31 151.34 15.59 118.51 20.38 110.96

Percentage error of measured flowrate relative to the true 

flowrate (%)
0.75 2.30 5.10 3.91 8.13 1.88 1.80 23.87

True grade (g/t) 21 24.84 24.84 47.69 22.18 28.61 21

Reconciled grade (g/t) 21.237 25.463 25.463 49.678 22.317 28.141 21.237

Percentage error of the reconciled grade compared to the 

true grade (%)
1.13 2.51 2.51 4.17 0.62 1.64 1.13 13.70

Measured grade (g/t) 21.55 25.97 26.68 49.29 21.57 28.08 20.64

Percentage error of measured grade relative to the true 

grade (%)
2.62 4.55 7.41 3.35 2.76 1.86 1.69 24.25

Variable Stream 1 Stream 2  Stream 3 Stream 4 Stream 5 Stream 6 Stream 7

 Total

 percentage

error

True flowrate (t/h) 109 144 144 15 129 20 109

Reconciled flowrate (t/h) 108.54 144.66 144.66 15.77 128.89 20.35 108.54

Percentage error of the reconciled flowrate 

compared to the true flowrate (%)
0.42 0.46 0.46 5.13 0.09 1.75 0.42 8.73

Measured flowrate  (t/h) 108.19 147.31 151.34 15.59 118.51 20.38 110.96

Percentage error of measured flowrate relative to 

the true flowrate (%)
0.75 2.30 5.10 3.91 8.13 1.88 1.80 23.87

True grade (g/t) 21 24.84 24.84 47.69 22.18 28.61 21

Reconciled grade (g/t) 21.191 25.31 25.31 50.049 22.283 28.107 21.191

Percentage error of the reconciled grade compared 

to the true grade (%)
0.91 1.89 1.89 4.95 0.46 1.76 0.91 12.77

Measured grade (g/t) 21.55 25.97 26.68 49.29 21.57 28.08 20.64

Percentage error of measured grade relative to the 

true grade (%)
2.62 4.55 7.41 3.35 2.76 1.86 1.69 24.25
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Fig 2. Comparison of the discrepancies in reconciled flowrates compared to true flowrates using conventional and robust reconciliation 

methods 

 
Fig 3. Comparison of the total percentage of errors of measured, conventionally reconciled, and robustly roconciled flowrates relative to 

true flowrates 

 

C. DATA RECONCILIATION OF A BILINEAR 

PROCESS USING THE CONVENTIONAL METHOD IN 

THE PRESENCE OF GROSS ERROR IN  ONE STREAM 

The results displayed in Table 5 show the inefficiency 
of the conventional reconciliation method in 
compensating the gross error in stream 4. The percentage 
error of the measured data compared with the true data 
of Stream 4 in the presence of gross error was 100%, 
which decreased slightly to approximately 95% in the 
reconciled data. However, this gross error also affects the 
estimation of reconciled values for other streams, leading 
to a total sum of absolute errors in the streams reaching 
124.66%, which exceeds the sum of the errors of the 
measured data. These findings indicate that the 
conventional method was not successful in correcting the 
gross error, and that in the presence of a gross error, 
reconciled values might be worse than measured data in 
terms of distance from the true values.  

D. DATA RECONCILIATION OF A BILINEAR 

PROCESS USING THE ROBUST XIE METHOD IN THE 

PRESENCE OF GROSS ERROR IN STREAM 4 

After conducting data reconciliation of a bilinear 
process in the presence of a gross error in recirculation 
stream 4 using the robust Xie method, the following 
outcomes were obtained. Results of the reconciliation 
process using the conventional and robust Xie methods 
were compared to the true flow rates in Fig. 4, indicating 
that the robust method was effectively performed the 
reconciliation process. Table 6 displays a comparison of 
the measurement errors using the robust Xie method in 
the presence of a gross error in recirculation stream 
number 4, including the percentage error of the 
reconciled data compared to the true data, and the 
percentage error of measured data compared to the true 
data. The results showed that the percentage error for all 
streams and grades was generally very low, with 
reasonable error percentages for all cells.  
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Table  5. Comparison of the discrepancy between measured and reconciled data with true data in conventional reconciliation 
method under a gross error in stream number 4. 

 
 

Table 6. Comparison of the discrepancy between measured and adjusted data with true data in robust reconciliation method under a 
gross error in stream number 4. 

 

 
Fig.  4. Comparison of the discrepancies in reconciled flowrates compared to true flowrates using conventional and robust reconciliation 

methods  in the presence of a gross error in stream number 4 

Variable Stream 1 Stream 2  Stream 3 Stream 4 Stream 5 Stream 6 Stream 7

 Total

 percentage

error

True flowrate (t/h) 109 144 144 15 129 20 109

Reconciled flowrate (t/h) 104.78 152.83 152.83 29.21 123.62 18.85 104.78

Percentage error of the reconciled flowrate 

compared to the true flowrate (%)
3.87 6.13 6.13 94.73 4.17 5.75 3.87 124.66

Measured flowrate  (t/h) 108.19 147.31 151.34 30.00 118.51 20.38 110.96

Percentage error of measured flowrate relative to 

the true flowrate (%)
0.75 2.30 5.10 100.00 8.13 1.88 1.80 119.96

True grade (g/t) 21 24.84 24.84 47.69 22.18 28.61 21

Reconciled grade (g/t) 20.74 26.99 26.99 48.8 21.83 27.88 20.74

Percentage error of the reconciled grade compared 

to the true grade (%)
1.24 8.66 8.66 2.33 1.58 2.55 1.24 24.26

Measured grade (g/t) 21.55 25.97 26.68 49.29 21.57 28.08 20.64

Percentage error of measured grade relative to the 

true grade (%)
2.62 4.55 7.41 3.35 2.76 1.86 1.69 24.25

Variable Stream 1 Stream 2  Stream 3 Stream 4 Stream 5 Stream 6 Stream 7

 Total

 percentage

error

True flowrate (t/h) 109 144 144 15 129 20 109

Reconciled flowrate (t/h) 109.86 147.99 147.99 16.38 131.61 21.75 109.86

Percentage error of the reconciled flowrate 

compared to the true flowrate (%)
0.79 2.77 2.77 9.20 2.02 8.75 0.79 27.09

Measured flowrate  (t/h) 108.19 147.31 151.34 30.00 118.51 20.38 110.96

Percentage error of measured flowrate relative to 

the true flowrate (%)
0.75 2.30 5.10 100.00 8.13 1.88 1.80 119.96

True grade (g/t) 21 24.84 24.84 47.69 22.18 28.61 21

Reconciled grade (g/t) 21.16 25.38 25.38 50.09 22.31 28.09 21.16

Percentage error of the reconciled grade compared 

to the true grade (%)
0.76 2.17 2.17 5.03 0.59 1.82 0.76 13.31

Measured grade (g/t) 21.55 25.97 26.68 49.29 21.57 28.08 20.64

Percentage error of measured grade relative to the 

true grade (%)
2.62 4.55 7.41 3.35 2.76 1.86 1.69 24.25
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Fig.  5. Comparison of the total percentage of errors of measured, conventionally reconciled, and robustly rocnciled flowrates relative to 

true flowrates in the presence of a gross error in stream number 4 

 
Fig.  6. Comparison of the discrepancies in reconciled flowrates compared to true grades using conventional and robust reconciliation 

methods  in the presence of a gross error in stream number 4 

 
Fig.  7.  Comparison of the total percentage of errors of measured, conventionally reconciled, and robustly roconciled grades relative to true 

grades in the presence of a gross error in stream number 4 

In stream number 4, where a gross error exists, the 
percentage error of the reconciled flow rate compared 
with the true flow rate is significantly lower than that of 
the measured flow rate compared with the true flow rate 
of conventional reconciliation method. This highlights the 
high capability of the robust method to handle outliers 

and erroneous data. The total percentage error for the 
reconciled flow rate compared to the true data was very 
low (27%), whereas the total percentage error of the 
measured flow rate compared to the true data was 
119.96%, indicating a significant enhancement of 
roconciled values compared to measurments. 
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IV. CONCLUSION 

To the authors’ best knowledge, for the first time, 
results of two rconciliation methods, namely robust and 
conventional ones, were compared to each other, since 
simulated sampling data were generated from true 
balanced data and the trues values were available. The 
following comparisons highlight the results: 

- The robust method, when employed under normal 
circumstances and in the absence of gross errors, 
enhances the accuracy of the flow rate and grade 
estimations, bringing the results closer to their true 
values. 

- However, when a gross error exists in a stream, the 
conventional approach fails to correct the error and 
instead yields data estimates that are further from 
the true values. Such an error in stream 4 negatively 
affected the other streams, causing their estimates 
to diverge from the true values when using the 
conventional method. 

- In contrast, the robust method effectively handles 
gross errors in a stream, leading to a significant 
enhancement in the accuracy of the reconciled data 
compared with the conventional method. This 
resulted in a substantial decrease in the percentage 
error during data reconciliation. These outcomes 
illustrate the exceptional ability of the robust 
method to handle outliers and erroneous data. 
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