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ABSTRACT 
Magnetometry is one of the geophysical methods used to explore metal deposits, especially iron deposits and magnetite 

minerals. The two-dimensional model resulting from the magnetometric operation cannot estimate the grade in the depth of 
the deposit, so in this article, the attempt is made by using the magnetic outputs obtained after the magnetic survey operation 
and the two-dimensional model designed with the help of the data extracted from the borehole which is available in the studied 
area, and combining this information and obtaining relationships between them with the help of artificial intelligence, a three-
dimensional numerical model can be obtained that can be generalized to other points that lack depth data. Reduction of human 
errors and lack of prior knowledge of mine geological structures is one of the capabilities of this method. This method will be 
a new approach to numerical simulation in the field of investigation of mineral masses. Finally, in the studied area of the 
Sechahoon deposit in central Iran, high precision was achieved in the ratio of zero iron grade data in the methods of Gradient 
Boosting and Random Forest. Also, the results of these two algorithms showed that the Maximum Mean Square Error (MSE) 
and Mean Absolute Error (MAE) in the training data are 0.007 and 0.05, respectively, and in the test data are 0.03 and 0.11, 
respectively, which these parameters reached the maximum of 0.03 and 0.1 in the inspection of validation boreholes.  
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I. INTRODUCTION  

One of the basic principles in mineral exploration 
activities will be the issue of cost reduction in operations. 
The magnetometry method is one of the cheapest and 
fastest geophysical methods, which is used in most 
mineral potentials, especially in iron-rich areas, and in 
this sense, it is ahead of other geophysical methods 
(Keary et al., 2002). 
With the help of new and practical geophysical methods, 
it is possible to reduce the operating time, and reduce the 
burden of false costs, and also by relying on the 
necessary science and experience and the appropriate 
adaptation of data, the validity of the results can be 
increased. Therefore, efforts will be made to design and 
go through the optimal process using appropriate 
methods and data analysis through artificial intelligence. 
The application of artificial intelligence and its sub-
branches in geosciences and mineral mass modeling has 
expanded in recent decades. By using artificial 
intelligence algorithms, it will be possible to estimate 
more geomagnetic data. Artificial intelligence is a branch 
of computer science that examines the practical 

computing requirements such as perception, reasoning, 
and learning and provides a system to perform such 
operations. Artificial intelligence is the study of how to 
make computers do things that humans can do better, in 
fact, it is the study of methods to turn a computer into a 
machine that can perform actions performed by humans. 
The methods and techniques of artificial intelligence 
have been created to solve those problems that could not 
be easily solved by mathematical methods (Kapageridis 
et al., 1999). 
Machine learning, as a subset of artificial intelligence, is 
the study of algorithms and statistical models used in 
computer systems that use experimental mathematical 
patterns and inferences to perform calculations instead 
of specific instructions (Mitchell, 1997). 
Python was designed in the late 1980s by Guido van 
Rossum, with a dynamic system and an emphasis on 
readability and rapid prototyping. Python is currently 
the most preferred programming language for scientific 
computing, data science, and machine learning, and it 
increases performance and productivity by using low-
level libraries and convenient APIs.  
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The most important strengths of this programming 
language are (Raschka et al., 2020): 
➢ Convenient while ensuring computational efficiency 
➢ Creating efficient libraries with lower-level code than 

other programming languages 
➢ Parallel processing of operations 
➢ Free and available programming language 
➢ Portability between different operating systems. 

A lot of research has been done in recent years to model 
and optimize various parameters based on geophysical 
information with the help of artificial intelligence 
methods. For example, in 2009 Yuan Sanyi and 
colleagues optimized the inversion of three models of 
linear geophysical data sensitive to noise, the 
combination of linear and nonlinear, and nonlinear with 
the help of Particle Swarm Optimization and Ant Colony 
Optimization (Yuan et al., 2009). Alimoradi and his 
colleagues used a backpropagation network with 4 
middle layers to model the inversion of the 
magnetometric data of a dyke (Alimoradi et al., 2011). In 
another research with the same theme, with the help of 
a perceptron artificial neural network with two middle 
layers, the modeling of the electro-seismic data of wells 
has been done (Ardjmandpour et al., 2011). FitzGerald 
tried to establish a relationship between airborne 
geophysical data and identify subsurface structures of 
the earth by using an artificial intelligence feature 
extraction technique (FitzGerald, 2019). In another 
research in 2022, high-quality modeling of subsurface 
geological structures was achieved using UAV 
magnetometer data and Deep Learning algorithms 
(Mukherjee et al., 2022). Bayati and colleagues, using 
three-dimensional modeling of magnetometric data of 
an iron deposit, estimated its reserve (Bayati et al., 
2022).  
Alimoradi evaluated the silver grade of the Zarshuran 
gold mine using drill spatial data, data from the Induced 
Polarization (IP) geophysical approach, and the cuckoo 
search machine learning algorithm. The findings indicate 
that degree values can be accurately approximated using 
geophysical data, particularly in locations without 
drilling data (Alimoradi et al., 2020). 
Ghasemi Tabar and his colleagues have performed 
several algorithms, including Random Forest and 
Gradient Boosting on the northern anomaly of Choghart 
under the Python programming language (Ghasemi et al., 
2024). 
The SVM is a growingly popular learning method based 
on statistical learning theory developed by Vapnik and 
his colleagues (Vapnik, 1998). The SVM is based on two 
key ideas. The first is an optimum margin classifier, 
which is a linear classifier that creates a separating 
hyperplane (decision surface) with the maximum 
distance between positive and negative samples. In the 
context of assessing seismic liquefaction potential from 
a database of case records, the problem can be viewed as 

a binary classification task that distinguishes between 
positive (liquefied) and negative (non-liquefied) 
examples. The second major idea is the application of 
kernel functions. A kernel is a function that computes the 
dot product between two vectors. By applying a proper 
nonlinear kernel mapping to the original example data, 
the data can become linearly separable in a high-
dimensional feature space, despite not being separable 
in the original input space (Cristiani and Shawe-Taylor, 
2000; Platt, 1998). 
Random Forest or Random Decision Forests is a hybrid 
learning method for classification, and regression, which 
is based on a structure consisting of many decision trees, 
on the training time and the output of classes 
(classification), or for the average predictions of each 
tree. They work separately (Fukunaga and Hostetler, 
1975). Random Forests are suitable for decision trees 
that undergo pre-fitting in the training set. Also, this 
algorithm is very user-friendly and has only two input 
parameters of the network, which are the number of 
trees and the number of variables of subsets, which 
usually the response of the network is not highly 
sensitive to the value of these parameters (Yizong, 
1995). 
A decision tree is an algorithm that is easy to understand 
and interpret, but a single tree may not be enough to 
learn the features of the model. On the other hand, the 
random forest algorithm (Fig. 1) is a tree-based 
algorithm that uses the features of several decision trees 
to make decisions. Also, the decision tree algorithm is 
highly vulnerable in terms of overtraining and 
overfitting, but this problem can be easily overcome by 
implementing random forest regression. Another 
important feature of this algorithm in regression is its 
low variance. In fact, this algorithm uses averaging to 
improve performance and control overfitting (Dorin and 
Meer, 2002).  

 
Fig. 1. Random Forest performance procedure and merging 

the results of multiple decision trees 

Gradient Boosting algorithm is a machine learning 
method for regression and classification problems that 
are generated from a prediction model in the form of a 
set of weak prediction models, usually a decision tree. It 
builds the model in a stepwise manner like other booster 
methods and generalizes the variable function of the 
decision tree by allowing arbitrary optimization. The 
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Gradient Boosting algorithm is an integrated algorithm 
with high performance and stability, and it can handle 
noisy data well and has a high estimation ability in 
predicting non-linear data (Ho, 1995).  
The training process and progress of the enhanced 
gradient algorithm based on the error function and 
repetition of the training process are shown in Fig. 2. 
  

 
Fig. 2. Gradient Boosting training process (Breiman, 2001) 

The Gradient Boosting algorithm is a decision tree-based 
algorithm that was created by developing the Ada Boost 
method. “Boosting” in these methods means 
strengthening weak algorithms and turning them into 
strong algorithms. The correct understanding of the 
error function depends on the parameter we are trying 
to optimize. One of the most important features of this 
method is that it allows the user to determine the error 
function according to his needs (Dietterich, 2000). 
The main difference between this method and the 
Random Forest method is that in the Random Forest, the 
trees form a network next to each other, but in this 

method, the decision trees form a network in line with 
each other. This is fully visible in Fig. 3 (Boehmke and 
Greenwell, 2019). 

 

 

 

 

II. SECHAHOON DEPOSIT  

Sechahoon Mine is one of the deposits in central Iran, 
which is located 45 km northeast of Bafq city. The 
Sechahoon Mine consists of two anomalies with the 
numbers X and XI, and the X anomaly is located 3 km 
from the XI anomaly. From the geological point of view, 
it belongs to the Infracambrian and sedimentary 
volcanic rocks of the series known as Rizo. 
This series of layers is formed of volcanic rocks and 
basaltic and acid tuffs in the upper parts, and the lower 
part is mainly limestone of destructive sediments. 
Mineral masses are located both in volcanic rocks (such 
as anomaly XI) and at the border of volcanic-
sedimentary rocks (such as anomaly X). In Central Iran 
is located in the Alpine-Himalayan orogeny system that 
developed during the closing of the Paleo-Tethys Ocean. 
This area, along with other areas of the Cimmerian block 
in Iran (Alborz and Sanandaj – Sirjan), is located in the 
northeastern part of the Zagros – Makran rift connected 
to the Neo-Tethys Ocean rift. The sub-continents of 
Central and Eastern Iran can be described separately 
with fault boundaries, which include three crustal 
domains of the Lut, Tabas, and Yazd blocks with a north-
south orientation, which are adjacent to each other from 
east to west respectively. The blocks of Tabas and Yazd 
are separated by an arched and complex structural belt 
with a long extension as the Kashmar – Kerman tectonic 
zone, which is also called the Posht-e-Badam block (Fig. 
4) (Fathi et al., 2021). 
 

 

 
Fig. 3.The difference between the Random Forest and Gradient Boosting methods (Boehmke and Greenwell, 2019) 

 

Table 1. Types of reserves of Sechahoon deposit – Northern mass 

Class Volume (m3) Tonnes (ton) Density Fe % FeO % P % Tonnes (%) 

Measured 6,315,687 21,619,001 3.423 36.487 14.879 0.062 27% 

Indicated 16,461,648 54,341,369 3.301 32.531 13.611 0.071 69% 

Inferred 1,003,806 3,247,205 3.235 30.525 10.609 0.119 4% 

Sum\Avg 23,781,141 79,207,575 3.320 33.528 13.834 0.07 100% 
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Fig. 4. A) The location of central Iran relative to the Zagros and Alborz rifts, B) Tectonics map of Central Iran blocks, C) Geological 
map of Bafq – Saghand block along with the location of iron oxide-apatite, manganese, lead and zinc deposits (Majidi et al. 2017) 

A 

B 
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Fig. 5 shows the magnetic anomaly around the 
investigated area: 
 

 
Fig. 5. General map of the magnetic anomaly of the studied 

peripheral area 

The above-mentioned magnetic anomaly map shows 
almost drastic changes that may be caused by changes in 
the topography or lithology of the area. As can be seen in 
the picture, three zones have been identified in this area. 
Zone A has the lowest intensity of the magnetic field, 
which indicates the absence of ore mass in the area, or 
its great depth or sedimentary bedrock with east-west 
extension. Zone B has the highest intensity of the 
magnetic field, which may be due to the presence of 
masses with high intensity of magnetization, as well as 
the low depth of bedrock. Zone C also has moderate 
magnetic intensity, which probably indicates the 
presence of acidic igneous rocks, because acidic igneous 

rocks show moderate to low magnetic resistivity due to 
low amounts of iron minerals.  

III. METHODOLOGY  

In this article, according to Fig. 6, the possibility of grade 
numerical modeling at different depths has been 
investigated by applying an upward expansion filter to 
the magnetometric data and then by entering the data 
from the upward filter and the grade data at different 
depths in three algorithms, SVM, Random Forest, and 
Gradient Boosting.  
 

A. SURVEYING AND APPLYING AN UPWARD EXPANSION FILTER 

TO MAGNETOMETRIC DATA 

To take the magnetometry of the studied area, a GEM 
proton magnetometer device made in Canada was used, 
and the accuracy of this device is equal to 0.01 nanotesla. 
According to the desired range and required data, 20 x 
20 profiles perpendicular to the piles and the drilling 
network were designed, and finally, after about 13 
kilometers of navigation with the device, 459 data points 
were read and surveyed. They include the latitude and 
longitude and the number obtained from the 
magnetometer without depth. 
After surveying and applying the desired corrections on 
the magnetometric data, they were imported from the 
Geosoft Oasis Montaj software, which led to the 
preparation of the following two-dimensional 
magnetometric map of the studied area (Fig. 7):  
In the upward expansion filter stage, according to the 
final depth of 13 drilled boreholes and the length of the 
cores received from them, it was decided that the 
sequence of applying this filter would be 3 meters by 3 
meters. The final depth of applying this filter is 282 
meters, which is the deepest borehole drilled. As a result, 
this filter has been applied 94 times for different depths. 
After applying the filter and obtaining the two-
dimensional depth maps, numerical data was extracted 
from the maps and a numerical value was extracted at 
each depth in the drilling points, which finally resulted in 
a complete set of data including longitude and latitude, 
depth, and magnetic depth number.  
The results obtained by applying the upward expansion 
filter can be seen in Fig. 8 to 11: 
After extracting the magnetic depth data, the numerical 
factor of the boreholes at different depths is added to the 
category of data obtained from the above operations. 
Eventually, this data set of 892 numbers will include 
coordinates, depth, magnetism depth, and finally the 
true value of the grade at each depth.  
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Fig. 6. General flowchart of the article’s methodology 

 

 
Fig. 7. The total map shows the regional distribution of the magnetic property of the ore 
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Fig. 8. The map of applying the upward expansion filter of magnetometry at a depth of 9 meters 

 

 
Fig. 9. The map of applying the upward expansion filter of magnetometry at a depth of 21 meters 

 
Fig. 10. The map of applying the upward expansion filter of magnetometry at a depth of 39 meter
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Fig. 11. The map of applying the upward expansion filter of magnetometry at a depth of 60 meters 

B. STATISTICAL ANALYSIS 

The statistical results of the entire data set were 
extracted using the Pandas library in the Python 
environment as follows: 
 

Table 2. Statistical parameters of the studied data  
X Y Mag. Fe % 

count 892 892 892 892 

mean 379063.1 3530599 -1206.22 11.85294 

std 119.4184 106.0084 1841.98 17.24815 

min 378867.7 3530406 -5586 0 

25% 378930.7 3530533 -2368.75 0 

50% 379064.7 3530580 -616.5 0 

75% 379178.7 3530709 210.25 22.305 

max 379245.7 3530762 1852 63.79 

 
From the points obtained from Table 2, the first one can 
be the large amount of zero data in the measured values 
of grade, which can be related to the low accuracy of 
sampling and analysis of boreholes, as well as human 
error; this issue itself can inevitably cause errors. The 
second case can be mentioned as the low changes in the 
location coordinates of the boreholes and the high 
changes in the value of the magnetometric parameter, 
which indicates the proximity of the boreholes to the 
existing ore in the area.  
 

Table 3. Correlations (Percent) in Inputs and Output of 
the studied data  

X Y Mag. Fe 

X 100 15.89 59.23 -6.5 

Y 15.89 100 29.49 13.52 

Mag. 59.23 29.49 100 -4.15 

Fe -6.5 13.52 -4.15 100 

 

The only interactive point Table 3 is the higher 
correlation between the magnetometric parameter with 

the longitude coordinates of the boreholes than the 
correlation between the same parameter with the 
latitude coordinates of the boreholes, which indicates 
the greater dispersion of the magnetometric parameter 
along the longitude coordinates. 
Fig. 12 and Fig. 13 show the distribution of two key 
parameters relative to the geographic coordinates of the 
boreholes in this data set. 
According to the Fig. 14 and 15 it can be easily 
understood that the data used in artificial intelligence 
algorithms needs normalization, which will be discussed 
in the following sections. 
 

C. DATA PREPARATION 

In order not to interfere with the size and amount of data 
and to apply the effect of the deviation of numbers from 
the mean, mode and median values in the learning 
process of the algorithm, there is a need to normalize the 
input data. To prepare the data for use in neural 
networks, it is necessary to pre-process the data first. In 
this stage of the work, after checking the data for validity 
and usability and removing invalid data, data 
normalization is done.  
In this article, the Min-Max model is used to normalize 
the data, and the data are defined in the range of zero and 
one. In the Python programming language, the 
preprocessing library is used to do this. In this simple 
method, each set of data is mapped to arbitrary interval 
whose minimum and maximum values are already 
known. In this method, any arbitrary interval can be 
converted into a new interval with just a simple 
conversion. Suppose feature A, from the data set that is 
in the interval between min A to max A, is to be mapped 
to the new interval new Min to new Max. For this 
purpose, any initial value such as v in the initial interval 
will be converted to the new value v' in the new interval 
according to the following relation:  
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(1) 

 

 
Fig. 12. Dispersion of iron grade values in magnetic longitude 

and latitude coordinates 
 

 
Fig. 13. Dispersion of magnetism values in magnetic longitude 

and latitude coordinates 

 

 
Fig. 14. Histogram of percentage of iron in the data set 

D. SUPPORT VECTOR MACHINE ALGORITHM 

Vapnik and Lerner in 1963, and Vapnik and 
Chervonenkis in 1964 developed the SV algorithm as a 
nonlinear generalization of the Generalized Portrait 
algorithm (Smola and Bernhard Schoellkopf, 2004).  It 
relies heavily on Vapnik and Chervonenkis (1974), and 

Vapnik (1982, 1995)'s VC theory, which developed over 
the past three decades. In a nutshell, VC theory describes 
properties of learning machines that enable them to 
generalize well to new data sets (Vapnik et al., 1997).   

 

 
Fig. 15. Histogram of percentage of Magnetization in the data 

set 

 
Suppose we are given training data {(x1, y1), . . ., (xL, yL)} 
⊂ X × R, where X represents the input pattern space (e.g. 
X = Rd). An example would be the exchange rate for a 
given currency measured the following day along with 
the corresponding economic indicators. In ε-SV 
regression (Smola and Bernhard, 2004), our goal is to 
discover a function f (x) that has at most ε deviation from 
the actual attained targets yi for all training data, while 
remaining as flat as possible. In other words, errors are 
not concerned as long as they are less than ε, but will not 
be accepted deviations more than this. When dealing 
with exchange rates, it is crucial to ensure you don't lose 
more than ε.  
For pedagogical reasons, it begins by describing the case 
of linear functions f, taking the form:  
 

𝑓 (𝑥) = [𝑤, 𝑥] +  𝑏  𝑤𝑖𝑡ℎ  𝑤 ∈  𝑋, 𝑏 ∈  𝑅                         (1) 
 

[·,·] represents the dot product in X. In the prior 
equation, flatness implies a small w. One technique to 
achieve this is to minimize the norm, i.e. ǁwǁ2 = [w, w]. 
This problem can be expressed as a convex optimization 
problem: 

Minimize     
1

2
ǁ𝑤ǁ2 

subject to    {
𝑦𝑖 − [𝑤, 𝑥𝑖] − 𝑏 ≤ 𝜀

[𝑤, 𝑥𝑖] + 𝑏 − 𝑦𝑖 ≤ 𝜀
                                        (2) 

 
The equation above assumes the existence of a function 
f that approximates all pairings (xi, yi) with ε precision, 
implying that the convex optimization problem is 
possible.  
However, this is not always the case, and it may be 
needed to allow for certain faults. Similar to Cortes and 
Vapnik's (1995) "soft margin" loss function for SV 
machines, slack variables (ξi, ξi∗) can be employed to 
address infeasible restrictions in optimization problems.  
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Hence, the formulation stated in Vapnik (1995) is as 
follows: 

minimize 
1

2
ǁ𝑤ǁ2 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)𝐿
𝑖=1  

subject to {

𝑦𝑖 − [𝑤, 𝑥𝑖] − 𝑏 ≤ 𝜀 + 𝜉𝑖

[𝑤, 𝑥𝑖] + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
∗

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0

                                 (3) 

 

The constant C > 0 sets the trade-off between f's flatness 
and the maximum tolerance for deviations higher than ε. 
This refers to the ε-insensitive loss function |ξ|ε, as 
described by (Herbrich, 2002):  
 

|ξ|ε =  {
0 𝑖𝑓 |𝜉| ≤ 𝜀

|𝜉| − 𝜀 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                               (4) 

 

E. RANDOM FORESTS ALGORITHM 

1) Tree Learning 
Decision trees are a popular approach to numerous 
machine learning challenges. Tree learning comes 
closest to relating the criteria for being used as an off-
the-shelf data mining process since it is invariant under 
scaling and other transformations of feature values, is 
resilient to the insertion of irrelevant information, and 
creates inspectable models. However, they are rarely 
correct (Aliyari Ghassabeh, 2013). 
Deeply developed trees, in particular, have a tendency to 
acquire highly irregular patterns: they overfit their 
training sets, resulting in low bias but large variation. 
Random forests are a method of averaging numerous 
deep decision trees trained on different regions of the 
same training set, with the purpose of reducing variation 
(Aliyari Ghassabeh, 2013). 
This results in a modest increase in bias and some loss of 
interpretability, but it significantly improves the final 
model's performance. Forests are like the culmination of 
decision tree algorithm work. Using the combined efforts 
of several trees to improve the performance of a single 
random tree. Though not quite equivalent, forests 
provide the effects of a K-fold cross-validation (Carreira-
Perpinan et al., 2007). 

 
2) Bagging  
 The random forest training algorithm relies on the 
common approach of bootstrap aggregation, sometimes 
known as bagging, to tree learners. Given a training set X 
= x1, ..., xn and responses Y = y1, ..., yn, bagging chooses a 
random sample (B times) with replacement of the 
training set and fits trees to these samples.  
For b = 1, ..., B: 

I. Sample, with replacement, n training 
examples from X, Y; call these Xb, Yb. 

II. Train a classification or regression tree 
fb on Xb, Yb. 
 

After training, predictions for unseen samples x' can be 
made by averaging the predictions from all the 
individual regression trees on x': 
 

𝑓 =  
1

𝐵
 ∑ 𝑓𝑏(𝑥′)

𝐵

𝑏=1

                                                               (5) 

 

or by taking the majority vote in the case of classification 
trees.  
This bootstrapping approach improves model 
performance because it reduces variance without raising 
bias. This means that, whereas a single tree's predictions 
are highly sensitive to noise in its training set, the 
average of multiple trees is not, as long as the trees are 
uncorrelated. Simply training multiple trees on a single 
training set would result in heavily correlated trees (or 
the same tree many times, if the training technique is 
deterministic); bootstrap sampling is a method of de-
correlating the trees by exposing them to different 
training sets (Aliyari Ghassabeh, 2015). 
 

3) From Bagging to Random Forests 
The approach outlined above describes the original tree-
bagging algorithm. Random forests differ from this 
broad scheme in only one respect: they employ a 
modified tree learning algorithm that selects a random 
subset of the features at each candidate split in the 
learning process. This is known as "feature bagging" at 
times. The reason for this is the correlation of the trees 
in an ordinary bootstrap sample: if one or a few features 
are particularly strong predictors of the response 
variable (target output), these features will be chosen in 
many of the B trees, causing them to become correlated. 
Ho provides an examination of how bagging and random 
subspace projection lead to increased accuracy under 
various scenarios (Li et al., 2007). 
Typically, for a classification problem with p 

characteristics, each split uses √𝑝 (rounded down) 

features. For regression problems, the inventors 

recommend 
𝑝

3
 (rounded down) with a minimum node 

size of 5 as the default. In practice, the ideal values for 
these factors will vary depending on the problem, and 
they should be considered tuning parameters (Aliyari 
Ghassabeh, 2013). 
 

F. GRADIENT BOOSTING ALGORITHM 

Many supervised learning tasks have an output variable 
y and a vector of input variables x that are related to one 
another using a probabilistic distribution. The goal is to 
discover the function F ̂(x) that best approximates the 
output variable based on the values of input variables. 
This is formalized by defining a loss function L (y, F(x)) 
and minimizing it:  
 

𝐹̂ = 𝑎𝑟𝑔 min
𝐹

𝐸𝑥,𝑦 [𝐿(𝑦, 𝐹(𝑥))]. √𝑝                                   (6) 
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The gradient boosting approach uses a real-valued y to 
obtain an approximation F  ̂(x) as a weighted sum of 
functions hi(x) from the base (or weak) learners:  
 

𝐹̂(𝑥) =  ∑ 𝛾𝑖

𝑀

𝑖=1

ℎ𝑖(𝑥) + 𝑐𝑜𝑛𝑠𝑡.                                          (7) 

 
Typically, we are given a training set {(x1, y1), (x2, y2), …, 
(xn, yn)} with known x and y values. The method follows 
the empirical risk minimization principle, aiming to 

discover an approximation 𝐹̂(𝑥) that minimizes the 
average value of the loss function on the training set, 
hence minimizing empirical risk. It accomplishes this by 
starting with a model composed of a constant function 
F0(x) and incrementally expanding it greedily: 

𝐹0(𝑥) = 𝑎𝑟𝑔 min
𝛾

∑ 𝐿(𝑦𝑖 , 𝛾)

𝑛

𝑖=1

                                      (8) 

𝐹𝑚(𝑥) =  𝐹𝑚−1(𝑥) + 𝑎𝑟𝑔 𝑚𝑖𝑛
ℎ𝑚𝜖Ħ

[∑ 𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖) +𝑛
𝑖=1

ℎ𝑚(𝑥𝑖)]                                                                               (9) 
 

where ℎ𝑚𝜖Ħ is a base learner function.  
Unfortunately, selecting the optimum function h at each 
step given an arbitrary loss function L is a 
computationally impractical optimization task in 
general. As a result, we restrict our approach to a 
simplified form of the problem. The goal is to apply the 
steepest descent step to this minimization issue 
(functional gradient descent). To update the model for 
the continuous case, where Ħ represents the set of 
arbitrary differentiable functions on R, use the following 
equations: 
 

𝐹𝑚(𝑥) =  𝐹𝑚−1(𝑥) −  𝛾𝑚 ∑ 𝛻𝐹𝑚−1
𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖))𝑛

𝑖=1     (10)  

𝛾𝑚 = 𝑎𝑟𝑔 min
𝛾

∑ 𝐿 (𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖)

𝑛

𝑖=1

− 𝛾𝛻𝐹𝑚−1
𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖)))                (11) 

 

The derivatives are taken with regard to the functions Fi 
for i ϵ {1, 2, …, m}, and the step length is 𝛾𝑚. In the discrete 
situation when the set Ħ is finite, we choose the 
candidate function h closest to the gradient of L. The 
coefficient γ can then be computed using a line search on 
the equations above. Note that this strategy is a heuristic, 
so it does not produce an exact solution to the given 
problem, but rather an estimate (Painsky and Rosset, 
2017). 

IV. MAGNETOMETRIC – GRADE MODELING  

A. MODELING WITH SUPPORT VECTOR REGRESSION ALGORITHM  

After applying the normalization function on the data 
set, at the beginning and before entering the data into the 
algorithm, 10% of the data is randomly separated for 
validation and then the rest of the data is 80 to 20 for 

regression learning, (training data) and (testing) was 
divided. The selection of regression parameters in each 
part of learning is based on the selection of the best 
result in terms of the lowest average learning error 
(MSE). The results of learning for magnetism-grade data 
can be seen in Fig. 16: 
 

 
Fig. 16. Comparison of correlation coefficient values (R) and 

two error parameters (MAE, MSE) in SVR algorithm 
 

In Fig. 17, the results of the validation of the model with 
the SVR algorithm can be seen: 

 

B. MODELING WITH GRADIENT BOOSTING ALGORITHM  

The most important parameter in the GB algorithm is 
determining the learning rate. Like the previous 
algorithm, data segmentation is done for algorithm 
processes. The selection of regression parameters in 
each part of learning is based on the selection of the best 
result in terms of the lowest average learning error 
(MSE). The results of learning for magnetism-grade data 
can be seen in Fig. 18: 
In Fig. 19, the results of the validation of the model with 
the GB algorithm can be seen: 
 

C. MODELING WITH RANDOM FOREST ALGORITHM  

Like the previous two algorithms, data segmentation is 
done for algorithm processes. The selection of 
regression parameters in each part of learning is based 
on the selection of the best result in terms of the lowest 
average learning error (MSE). The results of learning for 
magnetism-grade data can be seen in Fig. 20:  
In Fig. 21, the results of the validation of the model with 
the RF algorithm can be seen: 
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Fig. 17. Comparison of real iron grade values and results of the SVR algorithm in the validation stage 

 

 
Fig. 18. Comparison of correlation coefficient values (R) and two error parameters (MAE, MSE) in GB algorithm 

 

 
Fig. 19. Comparison of real iron grade values and results from the GB algorithm in the validation stage 
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Fig. 20. Comparison of correlation coefficient values (R) and two error parameters (MAE, MSE) in RF algorithm 

 

 
Fig. 21. Comparison of real iron grade values and results from the RF algorithm in the validation stage 

 

V. CONCLUSION  

The main problem in the use of artificial intelligence and 
machine learning in various sciences is the existence of 
correct and appropriate data in terms of quantity and 
quality. In this article, the most limiting parameter is the 
data parameter and its accuracy and dispersion. As it 
was observed in the statistical analysis section, the 
number of dispersions of magnetometric data was very 
high in the amount of iron grade equal to zero, which 
reduces the correct relationship between iron grade and 
magnetometric number. As a result, it disrupts the 
learning process of the network and reduces the 
accuracy of the network.  
The correct distribution of boreholes in the 
magnetometer range with certain intervals can help to 
increase the accuracy of the model. According to the 
results, it is possible to reduce the cost of mineral 

exploration by expanding this method and take a big step 
towards optimizing the exploratory drilling network as 
the most expensive part of mining exploration.   
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