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ABSTRACT

The successful implementation of the GSI system in numerous global construction projects has proven its capability in giving
accurate estimations of the strength of diverse rock formations. The patterned arrangement of GSI values in open-pit mining
corresponds to the occurrence of geological rifts. The utilization of geostatistical techniques is effective in comprehending the
spread of regionalized factors in each designated research location. Because GSI is a non-additive variable, it may be more
beneficial to simulate than estimate it. This is because simulation algorithms can provide results without smoothing. In this
work, the theory of regionalized variables was used to analyze and interpret the spatial distribution of GSI values measured at
the Gol-Gohar iron mine southeast of Kerman City in Kerman Province, southeastern Iran. Variographic techniques were used
to understand and identify the regional behavior and distribution of GSI measurements. Moreover, it is feasible to model the
GSI estimations for individual blocks on the pit wall and generate maps to decipher the performance of the localized factors.
Such assessments can aid in devising strategies for enhancing the slope stability of pit walls to a maximum extent.
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I INTRODUCTION

Considering geologic structures like joints and shear
within a moving rock body is crucial when determining
the response to external force in combined influence
with intact rock blocks. This contrasts to geotechnical
investigations which typically use intact rock samples in
laboratory testing only. In situ testing is costly and poses
issues of reliability, repeatability, and scope. As a result,
various systems have been developed to link rock
properties with observable rock characteristics,
including the Geological Strength Index (GSI) and the
widely accepted Hoek-Brown failure criterion for
assessing rock properties.

The GSI was introduced by Hoek (1994), Hoek et al.
(2000) and Hoek et al. (1992). Hoek et al. (1998) and
Marinos and Hoek (2000) expanded the index for weak
rock formations in several publications. Following that,
Marinos and Hoek (2001) created a chart of geologic
strength index particularly suited for uneven rock
formations such as flysch, which generally comprise
turbulent cycles of robust and weak rocks like sandstone
and siltstone, respectively. Marinos et al. (2007)
subsequently revised this graph.

The GSI is determined by examining the lithology,
surface structure, and condition of rock masses, as well
as their discontinuities. This evaluation is done by

observing exposed rock in areas such as outcrops, road
cuts, tunnels, and drill cores. By assessing the blockiness
of the mass and the state of its discontinuities, the index
considers the major geologic constraints that define a
formation. The GSI is a straightforward tool that can be
easily and accurately assessed in the field. As
geotechnical engineering continues to develop, experts
seek new methods for improving design and addressing
uncertainties and variations in soil and rock properties.
One approach has been to explore using geostatistics in
solving geotechnical engineering problems.

In 1963, French professor Georges Matheron
developed a mathematical framework for utilizing
geostatistics in determining extractable reserves
present in mining resources. Matheron drew inspiration
from the pioneering research of South African mining
engineer D.G. Krige from the 1950s (Matheron, 1963).
Today, it is widely used in the mining and petroleum
industries and has been successfully integrated in recent
years with remote sensing (Meng et al., 2009; Pardo-
Iguzquiza et al, 2011) and geographic information
systems (GIS), soil science (Davidovi¢ etal.,, 2010; Emery,
2006; Mendes and Lorandi, 2006; Tavares et al., 2008),
rock mechanics (Farhadian, 2021; Farhadian and
Nikvar-Hassani, 2020; Marache et al., 2002; Oztiirk and
Nasuf, 2002; Tavchandjian et al., 1997), and hydrology
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(Chowdhury et al.,, 2010; Dehshibi et al., 2022; Hossain
etal, 2007; Jalali et al.,, 2016).

In spatial studies, geostatistical analysis is a valuable
tool for understanding the distribution of regionalized
variables. The smoothing effect is an expected outcome
of linear kriging methods like ordinary kriging. However,
accurately modeling extreme values using linear
methods is difficult, especially for the first and last
quartiles of a data set. Such variables are considered
non-additive and require methods for appreciating and
modeling their extreme ranges in geoscience fields.
Simulating these variables may prove to be more useful
than estimating them. As previously mentioned, GSI is an
example of a non-additive variable (Deutsch, 2013;
Dunham and Vann, 2007). To account for the inherent
bias in estimating a non-additive variable, a simulation
algorithm was employed to assess the spatial
distribution of GSI in the Gol-Gohar iron mine. This
approach is necessary to accurately predict the index for
every block of the mine wall and develop a dependable
slope stability program.

II. GEOLOGICAL SETTING

The Gol-Gohar iron mine is located southeast of
Sanandaj-Sirjan, adjacent to the Zagros zone in Iran. The
mining area is 53 km southwest of Sirjan at latitudes 55°
15' to 55° 24' and longitudes 29° 3' to 29° 7'. The
structural geological model of the mine was determined
by analyzing the tectonic characteristics, remote sensing
data of the surrounding region, geological survey data of
the mine, and information gathered from the Gol-Gohar
mine area.

Various faults can be seen in the studied area,
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including reverse faults, strike faults, normal faults, and
large tensile faults with considerable thickness. The
location and prevalence of faults surrounding the No. 1
pitin the Gol-Gohar mine are illustrated in Fig. 1.

The faults are attributed to an underground right-
lateral strike fault trending in the NW-SE direction and
inclined towards the left. This has caused the formation
of a compressed lens shape, whereby the northeast and
southwest boundaries are thrust faults dipping towards
the northeast and southwest, respectively. A
perpendicular structural geological section of the area
resembles a flower, shown in Fig. 2.

In bedrock enclosing an ore body, faults often have an
east-west trend with a dip of 45 to 80 degrees to the
south. These faults almost form a boundary between the
ore body and the bedrock. Instability is bound to occur
as the faults are angled with the northern benches of the
mine and their dip aligns with that of the trenches
(Hasanpoor et al., 2010).

III. NON-ADDITIVE VARIABLES

Additivity is the characteristic that enables certain
variables to be summed up through a linear average,
unlike others that do not possess this property (Dunham
and Vann, 2007). To avoid creating bias when calculating
an average value for a certain attribute, it is essential to
verify its additivity. This applies not only to

straightforward arithmetic averages, but also to other
linear combinations like weighted averages. Kriging and
other widely used spatial estimation techniques rely on
weighted averages, assuming that the attribute being
estimated is indeed additive.

Fig. 1. Faults distribution surrounding pit No.1 of Gol-Gohar iron mine (Hasanpoor et al., (2010).
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Fig. 2. Flower faults structure in the southwest wall of the Gol-Gohar mine (Hasanpoor et al., 2010).

Creating of a 3D model to estimate geotechnical
attributes like GSI can be compared to creating a grade
resource model. However, as opposed to grade variables,
the 3D model considers extra non-grade variables linked
to each block's actual value. Selecting the appropriate
spatial modeling tools is crucial, given that many
geomechanical attributes function differently in a spatial
context. A well-designed estimation strategy for these
new variables is necessary, and in certain cases,
simulations can be more useful than estimates that only
show local averages. The GSI value's frequency
distribution is as important as its absolute value in
understanding rock mass properties. GSI is non-additive,
and while averaging its values is standard practice, areas
with low GSI have a more significant impact on the rock
mass's engineering properties. If a spatial modeling
approach does not adequately reflect the occurrence of
low GSI values, it can lead to making decisions that are
not optimal (Deutsch, 2013; Dunham and Vann, 2007).

The linear estimation techniques, such as ordinary
kriging, fail to consider the frequency distribution of the
output data. While estimating the grade, these
approaches smooth out the extreme values, which helps
produce unbiased estimates. Nevertheless, relying on
these estimates to evaluate engineering design based on
smoothed GSI values can be perilous as it might hide the
presence of a small zone with low GSI that significantly
influences rock performance. Therefore, in such cases, it
is advisable to use backward geostatistical tools,
particularly geostatistical simulations, to adopt a
cautious and impartial approach (Deutsch, 2013;
Dunham and Vann, 2007).

Geostatistics is the practical implementation of
regionalized variables, where spatial characteristics are
treated as random variables. This model views spatial
observations as social realizations of a probabilistic
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function. Although geostatistics is based on a stochastic
approach, spatial data is essentially deterministic since
it dependents on its location in space. However, the
irregularity of its variation necessitates its treatment as
random variables. The model is grounded on second-
order stationarity, allowing for the spatial modeling of
average, variance, and variogram. Nonetheless,
Matheron (1971) revealed that second-order
stationarity is often too restrictive for many spatial
variables, prompting the adoption of the intrinsic
hypothesis, which posits stationarity of the average and
variance of differences. The theory of regionalized
variables is based on the intrinsic hypothesis which
assumes quasi-stationarity within a local neighborhood.
However, there are situations where the hypothesis does
not hold true. In certain regions, the mean values can
vary in a predictable or deterministic manner from one
part of the region to another. This suggests that there are
other factors at play beyond the traditional
understanding of regional variability. Further analysis is
needed to fully comprehend the complexities of these
variable patterns within a region (Chappell et al., 2003).
An examination was conducted to assess whether there
was a correlation between standard deviation and mean
in the area under study. It was determined that there was
no noteworthy association between these two variables.
To further investigate this, a tool was implemented to
look into the spatial regression of the data. Using the
parameters of the spatial regression, a simulation
algorithm was carried out and analyzed.

V. METHODOLOGY

The basic geostatistical tool to characterize the spatial
variability is the experimental variogram y(h). y(h) is
defined as half of the average squared difference for N
pairs of measurements of variable z separated by a
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distance h (Armstrong, 1998; Cheeney, 1992; Howarth,
1979; Journel and Journel, 1989):

N(h)

! Z [2(x; + 1) — 20)]? (1)

y(h) = O]

Once the experimental variogram has been calculated,
it is crucial to select a mathematical model that
accurately depicts the spatial variation of the variables.
This model must reflects the fluctuations of the
variogram concerning the distance h since it will
enhance the accuracy and dependability of kriging
predictions. Kriging is considered the most efficient and
impartial linear estimator for undetermined attributes
among the geostatistical methods of interpolation
(Cheeney, 1992; Journel and Journel, 1989). By utilizing
kriging, one can gain insight into the way natural
phenomena behave on a regional level at specific points
within a designated study area (Krige, 1962).

If data values are available at specific locations, it is
possible to estimate their values at other locations by
kriging. The goal of kriging is to predict the average value
of the nonadditive variable at the point (xy,z)
summarized as [known as Z(x,)].

The parameter's estimated value at x0 can be
determined by using the known values of
Z(x1).Z(X3). Z(X3). ... . Z(x,) for the parameter. This is
calculated using the formula:

200) = ) wiZ(x) 2)

N

Z(x,) = the sum of all weights (wi) multiplied by their
corresponding Z(xi) values from i = 1 to n. w; are weights
applied to the respective valuesZ(x;), such that:

Zn:wi =1 (3)

The weights wi are determined by the Kriging matrix
(Cheeney, 1992; Subyani, 1997).

V. ANALYZING AND INTERPRETING THE SPATIAL
DISTRIBUTION OF GSI VALUES

In this study, the variable is the GSI obtained from the
data measured in geotechnical wells. The location of
these boreholes is shown in Fig. 3.

The presented technique aims to demonstrate the
regional variation of GSI values. To investigate how the
variable of interest is distributed throughout the pit wall,
the variogram function is utilized to uncover the regional
patterns.

Considering the variogram parameters presented in
Table 1, it was found that the GSI data exhibit zonal
anisotropy. This anisotropy is seen in the search
ellipsoid used for the simulation and is shown in Fig. 4.

The experimental variograms for the GSI data were
fitted using spherical models, which are shown in Fig. 5.
The optimal threshold and optimal range were selected
for each variogram by a cross-validation method.

Regarding the statistical approach to the data set, the
range for GSI is wider than that for the interpolated map,
and it always makes sense that for the given
interpolation algorithm (i.e., kriging) there would be an
uninteresting underestimate for high values and an
overestimate for low values.

Fig. 3. The location of geotechnical bore holes on the pit wall
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Fig. 4. Search ellipsoid used for simulation of GSI values in the block model

Table 1. The parameters of the variogram functions

Variogram model Azimuth Dip Range(m) Sill Nugget
Spherical - 114 80.2 49
Spherical 45 0 374 107.5 20.8
Spherical 135 0 540 118.5 11.9
Spherical - 90 40 100.8 28.3
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Fig. 5. Spherical model fitted to experimental variograms calculated for GSI values

To simulate or approximate extreme upper and lower
values, also known as quartiles, an algorithm must
predict these values without a smoothing effect, a
negative aspect of some geostatistical methods. Such
methods tend to decrease high values and increase low
values in order to provide an estimate with the lowest
estimation variance. Essentially, inaccurate estimations
of secure blocks, which should have high GSI values, as
lower than their actual values can result in significant,
unnecessary costs to fortify or remove these blocks.

Vol 1, No. 2 / Summer 2023

Additionally, areas that are anticipated to have low GSI
values could be incorrectly assigned higher values,
classifying them as moderate or safe instead of as unsafe
and critical, thereby exacerbating mining risks.

VL. GEOSTATISTICAL SIMULATION

The utilization of geostatistical simulation tool has
progressively become widespread in the numerical
representation of natural occurrences that possesses
spatial organization. Likewise, the popularity of
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simulation tools in geosciences has also surged recently.
When dealing with a random variable X, its values are
referred to as realizations. Simulating such a variable
entail creating random realizations that possess
identical mean and variance as the original variable.
Alternatively, a random function Z(x;) comprises
numerous RVs for a range of i varying from 1 to n.
Subsequently, when considering a random function's
realization, it is a compilation of realizations derived
from the n RVs components. Therefore, the simulation of
a RF implies generating a large set of realizations
reflecting the characteristic parameters of the
considered RF. Conditional simulation is the term for the
simulation process generating results based on
measured values. The use of simulation extends beyond
just generating results, it can also be utilized as a spatial
interpolator which allows for the calculation of an
estimate for an unknown variable at any given point. The
estimate calculation involves running the simulation
process until the sampled data frequency histogram is
replicated, generating a set of realizations for every
unsampled point. By averaging these outcomes, an
estimate for each point without an actual value can be
obtained. Although various methods can simulate one-
dimensional RF realizations with a known mean and
variance, generalizing these methods to 2 or 3
dimensions poses significant computational difficulties
(Barca and Passarella, 2008).

Kriging is a smoothing interpolator that calculates
predictions based on weighted moving averages of
existing sample data. On the other hand, conditional
simulation is not affected by the smoothing effect of
kriging. In conditional simulation, the lost variation
caused by kriging smoothing is reintroduced through
predictions derived from joint realizations of the
random variables that are equally likely (Deutsch and
Journel, 1992). In other words, the generated figures are
not what we anticipated. They are instead chosen
randomly from the cumulative distribution function,
which takes into consideration the available data and
spatial differences predicted by the model (Dungan,
1999).

Simulation enables the creation of numerous
scenarios that represent the unpredictability of spatial
prediction. These scenarios can serve as a reference to
identify possible inaccuracies in estimating the
fluctuations of the desired characteristics (Journel,
1996).

Sequential Gaussian simulation (SGS) is likely the
most popular technique for carrying out conditional
simulation. To avoid biased outcomes, it is essential to
ensure that the data being used is distributed normally.
Quasi-stationarity properties can be undermined if this
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criterion is not met. In this kind of simulation, the values
generated are dependent on the initial dataset as well as
the previously modeled values. The SGS model assumes
that all conditional cumulative distribution functions
follow a Gaussian distribution (Deutsch and Journel,
1992).

By implementing random numbers, it is possible to
vary the sequence in which locations were visited and
generate numerous outcomes. This means that when
simulated values are added to the existing data set, the
potential values available for simulation are partly
impacted by previous simulation locations. Hence, the
values simulated at a particular location can fluctuate
depending on the available data (McKinley et al., 2011).

Generally, when it comes to conditional simulation, it
is necessary that the fundamental input parameters,
including the spatial model (variograms) and the
distribution of sample values (cumulative distribution
function, CDF), remain constant across each realization
within specific geological interval or facies. However, as
each realization begins with a distinct random starting
number, it creates a unique "random walk" or path
through the 3D or 2D volume. This "random walk"
determines the order of cells to be simulated via the
simulation algorithm, and it varies between realizations.
Consequently, the outcome at unsampled locations
differs, producing local alterations in facies distribution
and petrophysical properties in interwell space (Torcal
et al, 1999). The process of sequential Gaussian
simulation is summarized in Fig. 6.

A. SIMULATION OR ESTIMATION?

To create accurate simulated data, it is necessary for
the values and scattering properties to be replicated (at
least up to second order) in the same locations as the real
experimental data. However, the goal of conditional
simulations differs from estimates. The distinction lies in
their respective objectives.

(i) The goal of estimation is to offer an estimator Z* (x)
for every point x thatis as accurate as possible to the real,
unknown degree Z,(x). Nevertheless, these estimators
may not be able to reflect the spatial fluctuations present
in the actual grades {Z,(x)}. In the context of kriging,
reducing the deviation of the estimation involves
smoothing the genuine variances by following the
smoothing  relationships.  Correspondingly, the
polygonal influence appraisal method presumes that the
grade remains constant across the complete influence
polygon of a sample, leading to an inaccurate assessment
of the regional variations of the authentic grades. Thus,
the estimated deposit {Z*(x)} may provide a prejudiced
foundation for investigating the dispersion of real
grades.
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Several kriged values
are generated around a
centroid located at the
grid or volume center

Actual data are kriged
to a regular grid

Residual:

Adding Zzz to the
Ze (W) — 2y, (1)

original kriged map

Unconditional
simulations of normal-
score transformed data
are performed along
each line

Unconditional
interpolated values and
actual locations (well
location) are kriged

JaM

Values along the lines
are linearly
interpolated to grid
nodes (the more lines,
the less interpolation)

Unconditional
interpolated values are
back interpolated to
actual locations

Fig. 6. The process of sequential Gaussian Simulation

(ii) On the other hand, the simulated data (Z;(x)), or
better the conditionally simulated data (Z.s(x)), have the
same first two experimentally determined moments
(mean and covariance or variogram, and the histogram)
as the real value. On the other hand, the value Z;(x) or
Z.s(x) produced through simulation at each point xis not
the optimal Z,(x) estimator. Specifically, the variance of
Zy(x) estimated through conditionally simulated value
Z.s(x) is twice the kriging variance. In general,
simulating and estimating have opposing objectives
(Chiles and Delfiner, 2009).

B. THE PRINCIPLE OF CONDITIONING

Regionalizing a variable Z,(x) is worth considering,
perhaps as the grade at a specific point x. This particular
regionalized variable is seen as a manifestation of a
stationary RF known as Z,(x), which has an anticipated
mean of m and a centered covariance of C(h) or
variogram of 2y(h). The goal is to create an RF realization
of Z.s(x) that resembles Z,(x). This means the RF
should have the same expected value and second-order
moment, C(h) or y(h). Additionally, the RF realization of
Z.s(x) should align with the experimental data, which
means the simulated and experimental values should
match the experimental data points.

Zes(X0) = Zo(x), (4)

The true value of Z,(x) and its kriged value Z,;(x),,
obtained from the available data {Z,(x), where x belongs
to [}, should be considered. These two values differ by an
unknown error in the form of random functions:

Zo(X)= Zok (xX) + [Zo(x)- Zoye (x)] (5)

Where, I is the range that includes all actual data and
is to be kriged or simulated Z,(x) is the actual value
Z(x) is the estimated value estimated by an ordinary
kriging algorithm.

One key feature of kriging is that the difference
between the actual value and the predicted value, known
as the kriging error [Z,(x)- Z,,(x)], is perpendicular to
the predicted values:

Vol 1, No. 2 / Summer 2023

E{Zgk (). [Zo(x)- Zok ()]} = 0 (6)

Therefore, to obtain the desired conditional
simulation, itis sufficient to replace the unknown kriging
error in the above formula with an isomorphic and
independent kriging error. The conditional simulation
that is necessary is subsequently expressed in the
following manner:

Zes(X) = Zoi(x) + [Z5(x)- Zgpe (%)] (7)

The prerequisites for carrying out a conditional
simulation are fulfilled as we possess the subsequent
(Chiles and Delfiner, 2009; Deutsch, 2014):

The expected value of Z,(x) using RF is equal to that
of Zy(x) due to the unbiasedness of the Kriging
estimator:

E{Z(x)} =E{Zo(x)} and E {Zg (x)} = E {Z;(x)}

which entails

E{Zcs(0)} =E {Zo(x)} =m (8)

This can be explained by the fact that the simulated
kriging error and the true error [Z,(x)-Z,;(x)] have an
isomorphic relationship with RF Z_;(x). Furthermore,
this relationship is not dependent on Z,,(x). It can be
observed that the similarity between RF's Z.(x) and
Zy(x) is only applicable to their increments. This means
that while the variograms of these two RFs are the same,
their covariance may differ. However, this is not a major
issue in geostatistics as the variogram structure function
is prioritized over covariance.

The simulated outcome Z.(x) is linked to the
empirical data as the kriging values match the actual
values at the data points,

Zor (x0) = Zo(xo) 9)

Remark 1: The kriging weights for both Z;, (x) and
Zg (x) are identical because the two random fields,
Zy(x) and Zs(x), are isomorphic and the kriging setups
are identical as well.
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Remark 2: The principle of conditioning produces two
outcomes for each point x - the kriging Z,,(x) and the
conditionally simulated Z, (x). As the two kriging errors

E{[Zo(x) = Zsc(0)]?} = E{[Zo(x) = Zok (0)]*} + E{[Z,(x)

Ultimately, there are five basic steps in the SGS
process:

1. Create a random path through the grid nodes.

2. Go to the initial node along the path and utilize
Kriging for determining the mean and standard
deviation at that node by considering the environmental
data, also known as the local conditional probability
distribution (ICPD).

3. Choose a value randomly from the ICPD and assign
it as the node value.

4. Add the recently generated value to the conditioned

N

are independent, the variance of the conditional
simulation's estimate of the true value can be expressed
as:

= Zg (0)]?} = 2E{[Zo(x) = Zor ()]*} = 20¢

data.

According to the given simulation algorithm, several
realizations of the GSI dataset were created, and a
statistical summary of the simulated GSI is given in Table
2.

The simulated 3D block model of the GSI values with a
size of 25x25x10 m is shown in Fig. 7, and the simulated
map of the values at the height of 1645 m and the
distribution of the errors in the environment can be seen
in Fig. 8.

(10)

Table 2. Statistical parameters of simulated GSI values and Actual values obtained from drill holes

Field Parameter Composites data Block Model data
No of Records 582 35805
Minimum 0 0
Maximum 57.5 57.99
GSl% Mean 33.66 33.6
Skewness -1.658 -1.688
Kurtosis 4.225 4.875

G351 VALUE

[ABSENT]

W 010
10,200
[20,30)

H 20.35]
135,40

W 120451

. [45,CEILING]

Fig. 7. Block model of simulated GSI values
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Fig. 8. Simulated map of GSI value at level of 1654m and the distribution of the faults around pit

As can be seen from Figs. 7 and 8, there is a significant
relationship between the simulated GSI values and the
presence of discontinuities, especially faults in the pit
area. To put it differently, the way GSI values are spread
out in the Gol-Gohar iron mine No. 1 pit is associated
with how discontinuities are spread out. As a result,
evaluating the safety factor could be done by considering
the covariance between the GSI values and
discontinuities in the region. On the other hand, these
values could be used to design a maximum slope stability
program on pit walls.

C. VALIDATION OF SIMULATED BLOCK MODEL

Statistical and visual methods are used to validate the
simulated block model and are explained below.
D. VISUAL VALIDATION OF BLOCK MODEL

To visually validate the simulated model, several
cross-sections were created. Both the actual values (well
data) and the simulated values were plotted to compare

the mentioned groups at the common points (Fig. 9 and
Fig. 10).

The simulated GSI is compared with the values
obtained from boreholes in each vertical section. The
results show a satisfactory agreement between the
simulated values and the data obtained from the
boreholes.

E. STATISTICAL VALIDATION METHOD

The accuracy of the simulated GSI values was
validated by a statistical method. Therefore, a Q-Q plot of
the simulated and actual values is generated to compare
the actual data set with the simulated data set.

A Q-Q plot compares the quantiles of a real dataset
with those of a simulated dataset. It is a non-parametric
method for comparing the distributions of two data
samples. The @Q-Q plot of simulated and actual GSI values
demonstrated in Fig. 11 shows proper coincidence
between them.
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This research shows that:

1. Geostatistical methods can process uncertainty and
modifications in GSI values across different locations in
a mine field.

2. To understand the regional behavior of GSI,
variogram functions can be determined in the first step
of the application. Results from variogram analysis
indicate that the spatial structure of GSI has anisotropy
in the horizontal surface.

3. To interpret the behavior of the regionalized
variable, GSI values can be estimated for each local block
on the pit wall and maps can be prepared accordingly.

4. The distribution of GSI values in pit No.1 at the Gol-
Gohar iron mine corresponds with the distribution of
discontinuities, particularly faults around the pit area.
5. Recognizing and evaluating the spatial relationship of
the mentioned index and applying the SGS method of this
parameter for all mining walls resulting in a simulated
GSI map.

CONCLUSION
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