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ABSTRACT 
The successful implementation of the GSI system in numerous global construction projects has proven its capability in giving 

accurate estimations of the strength of diverse rock formations. The patterned arrangement of GSI values in open-pit mining 
corresponds to the occurrence of geological rifts. The utilization of geostatistical techniques is effective in comprehending the 
spread of regionalized factors in each designated research location. Because GSI is a non-additive variable, it may be more 
beneficial to simulate than estimate it. This is because simulation algorithms can provide results without smoothing. In this 
work, the theory of regionalized variables was used to analyze and interpret the spatial distribution of GSI values measured at 
the Gol-Gohar iron mine southeast of Kerman City in Kerman Province, southeastern Iran. Variographic techniques were used 
to understand and identify the regional behavior and distribution of GSI measurements. Moreover, it is feasible to model the 
GSI estimations for individual blocks on the pit wall and generate maps to decipher the performance of the localized factors. 
Such assessments can aid in devising strategies for enhancing the slope stability of pit walls to a maximum extent. 
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I. INTRODUCTION 

Considering geologic structures like joints and shear 
within a moving rock body is crucial when determining 
the response to external force in combined influence 
with intact rock blocks. This contrasts to geotechnical 
investigations which typically use intact rock samples in 
laboratory testing only. In situ testing is costly and poses 
issues of reliability, repeatability, and scope. As a result, 
various systems have been developed to link rock 
properties with observable rock characteristics, 
including the Geological Strength Index (GSI) and the 
widely accepted Hoek-Brown failure criterion for 
assessing rock properties. 

The GSI was introduced by Hoek (1994), Hoek et al. 
(2000) and Hoek et al. (1992). Hoek et al. (1998) and 
Marinos and Hoek (2000) expanded the index for weak 
rock formations in several publications. Following that, 
Marinos and Hoek (2001) created a chart of geologic 
strength index particularly suited for uneven rock 
formations such as flysch, which generally comprise 
turbulent cycles of robust and weak rocks like sandstone 
and siltstone, respectively. Marinos et al. (2007) 
subsequently revised this graph. 

The GSI is determined by examining the lithology, 
surface structure, and condition of rock masses, as well 
as their discontinuities. This evaluation is done by  

observing exposed rock in areas such as outcrops, road 
cuts, tunnels, and drill cores. By assessing the blockiness 
of the mass and the state of its discontinuities, the index 
considers the major geologic constraints that define a 
formation. The GSI is a straightforward tool that can be 
easily and accurately assessed in the field. As 
geotechnical engineering continues to develop, experts 
seek new methods for improving design and addressing 
uncertainties and variations in soil and rock properties. 
One approach has been to explore using geostatistics in 
solving geotechnical engineering problems. 

In 1963, French professor Georges Matheron 
developed a mathematical framework for utilizing 
geostatistics in determining extractable reserves 
present in mining resources. Matheron drew inspiration 
from the pioneering research of South African mining 
engineer D.G. Krige from the 1950s (Matheron, 1963). 
Today, it is widely used in the mining and petroleum 
industries and has been successfully integrated in recent 
years with remote sensing (Meng et al., 2009; Pardo-
Iguzquiza et al., 2011) and geographic information 
systems (GIS), soil science (Davidović et al., 2010; Emery, 
2006; Mendes and Lorandi, 2006; Tavares et al., 2008), 
rock mechanics (Farhadian, 2021; Farhadian and 
Nikvar-Hassani, 2020; Marache et al., 2002; Öztürk and 
Nasuf, 2002; Tavchandjian et al., 1997), and hydrology 
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(Chowdhury et al., 2010; Dehshibi et al., 2022; Hossain 
et al., 2007; Jalali et al., 2016).  

In spatial studies, geostatistical analysis is a valuable 
tool for understanding the distribution of regionalized 
variables. The smoothing effect is an expected outcome 
of linear kriging methods like ordinary kriging. However, 
accurately modeling extreme values using linear 
methods is difficult, especially for the first and last 
quartiles of a data set. Such variables are considered 
non-additive and require methods for appreciating and 
modeling their extreme ranges in geoscience fields. 
Simulating these variables may prove to be more useful 
than estimating them. As previously mentioned, GSI is an 
example of a non-additive variable (Deutsch, 2013; 
Dunham and Vann, 2007). To account for the inherent 
bias in estimating a non-additive variable, a simulation 
algorithm was employed to assess the spatial 
distribution of GSI in the Gol-Gohar iron mine. This 
approach is necessary to accurately predict the index for 
every block of the mine wall and develop a dependable 
slope stability program.  

II. GEOLOGICAL SETTING 

The Gol-Gohar iron mine is located southeast of 
Sanandaj-Sirjan, adjacent to the Zagros zone in Iran. The 
mining area is 53 km southwest of Sirjan at latitudes 55° 
15' to 55° 24' and longitudes 29° 3' to 29° 7'. The 
structural geological model of the mine was determined 
by analyzing the tectonic characteristics, remote sensing 
data of the surrounding region, geological survey data of 
the mine, and information gathered from the Gol-Gohar 
mine area. 

Various faults can be seen in the studied area, 

including reverse faults, strike faults, normal faults, and 
large tensile faults with considerable thickness. The 
location and prevalence of faults surrounding the No. 1 
pit in the Gol-Gohar mine are illustrated in Fig. 1. 

The faults are attributed to an underground right-
lateral strike fault trending in the NW-SE direction and 
inclined towards the left. This has caused the formation 
of a compressed lens shape, whereby the northeast and 
southwest boundaries are thrust faults dipping towards 
the northeast and southwest, respectively. A 
perpendicular structural geological section of the area 
resembles a flower, shown in Fig. 2. 

In bedrock enclosing an ore body, faults often have an 
east-west trend with a dip of 45 to 80 degrees to the 
south. These faults almost form a boundary between the 
ore body and the bedrock. Instability is bound to occur 
as the faults are angled with the northern benches of the 
mine and their dip aligns with that of the trenches 
(Hasanpoor et al., 2010). 

 

III. NON-ADDITIVE VARIABLES 

Additivity is the characteristic that enables certain 
variables to be summed up through a linear average, 
unlike others that do not possess this property (Dunham 
and Vann, 2007). To avoid creating bias when calculating 
an average value for a certain attribute, it is essential to 
verify its additivity. This applies not only to 
straightforward arithmetic averages, but also to other 
linear combinations like weighted averages. Kriging and 
other widely used spatial estimation techniques rely on 
weighted averages, assuming that the attribute being 
estimated is indeed additive. 

 

Fig. 1. Faults distribution surrounding pit No.1 of Gol-Gohar iron mine (Hasanpoor et al., (2010). 
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Fig. 2. Flower faults structure in the southwest wall of the Gol-Gohar mine (Hasanpoor et al., 2010). 

 

Creating of a 3D model to estimate geotechnical 
attributes like GSI can be compared to creating a grade 
resource model. However, as opposed to grade variables, 
the 3D model considers extra non-grade variables linked 
to each block's actual value. Selecting the appropriate 
spatial modeling tools is crucial, given that many 
geomechanical attributes function differently in a spatial 
context. A well-designed estimation strategy for these 
new variables is necessary, and in certain cases, 
simulations can be more useful than estimates that only 
show local averages. The GSI value's frequency 
distribution is as important as its absolute value in 
understanding rock mass properties. GSI is non-additive, 
and while averaging its values is standard practice, areas 
with low GSI have a more significant impact on the rock 
mass's engineering properties. If a spatial modeling 
approach does not adequately reflect the occurrence of 
low GSI values, it can lead to making decisions that are 
not optimal (Deutsch, 2013; Dunham and Vann, 2007). 

The linear estimation techniques, such as ordinary 
kriging, fail to consider the frequency distribution of the 
output data. While estimating the grade, these 
approaches smooth out the extreme values, which helps 
produce unbiased estimates. Nevertheless, relying on 
these estimates to evaluate engineering design based on 
smoothed GSI values can be perilous as it might hide the 
presence of a small zone with low GSI that significantly 
influences rock performance. Therefore, in such cases, it 
is advisable to use backward geostatistical tools, 
particularly geostatistical simulations, to adopt a 
cautious and impartial approach (Deutsch, 2013; 
Dunham and Vann, 2007). 

Geostatistics is the practical implementation of 
regionalized variables, where spatial characteristics are 
treated as random variables. This model views spatial 
observations as social realizations of a probabilistic 

function. Although geostatistics is based on a stochastic 
approach, spatial data is essentially deterministic since 
it dependents on its location in space. However, the 
irregularity of its variation necessitates its treatment as 
random variables. The model is grounded on second-
order stationarity, allowing for the spatial modeling of 
average, variance, and variogram. Nonetheless, 
Matheron (1971) revealed that second-order 
stationarity is often too restrictive for many spatial 
variables, prompting the adoption of the intrinsic 
hypothesis, which posits stationarity of the average and 
variance of differences. The theory of regionalized 
variables is based on the intrinsic hypothesis which 
assumes quasi-stationarity within a local neighborhood. 
However, there are situations where the hypothesis does 
not hold true. In certain regions, the mean values can 
vary in a predictable or deterministic manner from one 
part of the region to another. This suggests that there are 
other factors at play beyond the traditional 
understanding of regional variability. Further analysis is 
needed to fully comprehend the complexities of these 
variable patterns within a region (Chappell et al., 2003). 
An examination was conducted to assess whether there 
was a correlation between standard deviation and mean 
in the area under study. It was determined that there was 
no noteworthy association between these two variables. 
To further investigate this, a tool was implemented to 
look into the spatial regression of the data. Using the 
parameters of the spatial regression, a simulation 
algorithm was carried out and analyzed. 

IV. METHODOLOGY 

The basic geostatistical tool to characterize the spatial 
variability is the experimental variogram γ(h). γ(h) is 
defined as half of the average squared difference for N 
pairs of measurements of variable z separated by a 
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distance h (Armstrong, 1998; Cheeney, 1992; Howarth, 
1979; Journel and Journel, 1989): 

 

γ(h) =
1

2N(h)
∑ [z(xi + h) − z(xi)]2

N(h)

i=1

 (1) 

 
Once the experimental variogram has been calculated, 

it is crucial to select a mathematical model that 
accurately depicts the spatial variation of the variables. 
This model must reflects the fluctuations of the 
variogram concerning the distance h since it will 
enhance the accuracy and dependability of kriging 
predictions. Kriging is considered the most efficient and 
impartial linear estimator for undetermined attributes 
among the geostatistical methods of interpolation 
(Cheeney, 1992; Journel and Journel, 1989). By utilizing 
kriging, one can gain insight into the way natural 
phenomena behave on a regional level at specific points 
within a designated study area (Krige, 1962). 

If data values are available at specific locations, it is 
possible to estimate their values at other locations by 
kriging. The goal of kriging is to predict the average value 
of the nonadditive variable at the point (x,y,z) 
summarized as [known as Z(x0)].  

The parameter's estimated value at x0 can be 
determined by using the known values of 
Z(x1). Z(x2). Z(x3). … . Z(xn)  for the parameter. This is 
calculated using the formula: 

Z(x0) = ∑ wiZ(xi)

n

i=1

         (2) 

Z(x0) = the sum of all weights (wi) multiplied by their 
corresponding Z(xi) values from i = 1 to n. wi are weights 
applied to the respective valuesZ(xi), such that: 

∑ wi

n

i=1

= 1                  (3) 

The weights wi are determined by the Kriging matrix 
(Cheeney, 1992; Subyani, 1997). 

V. ANALYZING AND INTERPRETING THE SPATIAL 

DISTRIBUTION OF GSI VALUES 

In this study, the variable is the GSI obtained from the 
data measured in geotechnical wells. The location of 
these boreholes is shown in Fig. 3. 

The presented technique aims to demonstrate the 
regional variation of GSI values. To investigate how the 
variable of interest is distributed throughout the pit wall, 
the variogram function is utilized to uncover the regional 
patterns. 

Considering the variogram parameters presented in 
Table 1, it was found that the GSI data exhibit zonal 
anisotropy. This anisotropy is seen in the search 
ellipsoid used for the simulation and is shown in Fig. 4. 

The experimental variograms for the GSI data were 
fitted using spherical models, which are shown in Fig. 5. 
The optimal threshold and optimal range were selected 
for each variogram by a cross-validation method. 

Regarding the statistical approach to the data set, the 
range for GSI is wider than that for the interpolated map, 
and it always makes sense that for the given 
interpolation algorithm (i.e., kriging) there would be an 
uninteresting underestimate for high values and an 
overestimate for low values. 

 

 
Fig. 3. The location of geotechnical bore holes on the pit wall
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Fig. 4. Search ellipsoid used for simulation of GSI values in the block model 

 

Table 1. The parameters of the variogram functions 
Variogram model Azimuth Dip Range(m) Sill Nugget 

Spherical - - 114 80.2 49 
Spherical 45 0 374 107.5 20.8 
Spherical 135 0 540 118.5 11.9 
Spherical - 90 40 100.8 28.3 

 

 
Fig. 5. Spherical model fitted to experimental variograms calculated for GSI values 

To simulate or approximate extreme upper and lower 
values, also known as quartiles, an algorithm must 
predict these values without a smoothing effect, a 
negative aspect of some geostatistical methods. Such 
methods tend to decrease high values and increase low 
values in order to provide an estimate with the lowest 
estimation variance. Essentially, inaccurate estimations 
of secure blocks, which should have high GSI values, as 
lower than their actual values can result in significant, 
unnecessary costs to fortify or remove these blocks. 

Additionally, areas that are anticipated to have low GSI 
values could be incorrectly assigned higher values, 
classifying them as moderate or safe instead of as unsafe 
and critical, thereby exacerbating mining risks. 

VI. GEOSTATISTICAL SIMULATION 

The utilization of geostatistical simulation tool has 
progressively become widespread in the numerical 
representation of natural occurrences that possesses 
spatial organization. Likewise, the popularity of 
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simulation tools in geosciences has also surged recently. 
When dealing with a random variable X, its values are 
referred to as realizations. Simulating such a variable 
entail creating random realizations that possess 
identical mean and variance as the original variable. 
Alternatively, a random function 𝑍(𝑥𝑖)  comprises 
numerous RVs for a range of i varying from 1 to n. 
Subsequently, when considering a random function's 
realization, it is a compilation of realizations derived 
from the n RVs components. Therefore, the simulation of 
a RF implies generating a large set of realizations 
reflecting the characteristic parameters of the 
considered RF. Conditional simulation is the term for the 
simulation process generating results based on 
measured values. The use of simulation extends beyond 
just generating results, it can also be utilized as a spatial 
interpolator which allows for the calculation of an 
estimate for an unknown variable at any given point. The 
estimate calculation involves running the simulation 
process until the sampled data frequency histogram is 
replicated, generating a set of realizations for every 
unsampled point. By averaging these outcomes, an 
estimate for each point without an actual value can be 
obtained. Although various methods can simulate one-
dimensional RF realizations with a known mean and 
variance, generalizing these methods to 2 or 3 
dimensions poses significant computational difficulties 
(Barca and Passarella, 2008). 

Kriging is a smoothing interpolator that calculates 
predictions based on weighted moving averages of 
existing sample data. On the other hand, conditional 
simulation is not affected by the smoothing effect of 
kriging. In conditional simulation, the lost variation 
caused by kriging smoothing is reintroduced through 
predictions derived from joint realizations of the 
random variables that are equally likely (Deutsch and 
Journel, 1992). In other words, the generated figures are 
not what we anticipated. They are instead chosen 
randomly from the cumulative distribution function, 
which takes into consideration the available data and 
spatial differences predicted by the model (Dungan, 
1999).  

Simulation enables the creation of numerous 
scenarios that represent the unpredictability of spatial 
prediction. These scenarios can serve as a reference to 
identify possible inaccuracies in estimating the 
fluctuations of the desired characteristics (Journel, 
1996). 

Sequential Gaussian simulation (SGS) is likely the 
most popular technique for carrying out conditional 
simulation. To avoid biased outcomes, it is essential to 
ensure that the data being used is distributed normally. 
Quasi-stationarity properties can be undermined if this 

criterion is not met. In this kind of simulation, the values 
generated are dependent on the initial dataset as well as 
the previously modeled values. The SGS model assumes 
that all conditional cumulative distribution functions 
follow a Gaussian distribution (Deutsch and Journel, 
1992). 

By implementing random numbers, it is possible to 
vary the sequence in which locations were visited and 
generate numerous outcomes. This means that when 
simulated values are added to the existing data set, the 
potential values available for simulation are partly 
impacted by previous simulation locations. Hence, the 
values simulated at a particular location can fluctuate 
depending on the available data (McKinley et al., 2011).  

Generally, when it comes to conditional simulation, it 
is necessary that the fundamental input parameters, 
including the spatial model (variograms) and the 
distribution of sample values (cumulative distribution 
function, CDF), remain constant across each realization 
within specific geological interval or facies. However, as 
each realization begins with a distinct random starting 
number, it creates a unique "random walk" or path 
through the 3D or 2D volume. This "random walk" 
determines the order of cells to be simulated via the 
simulation algorithm, and it varies between realizations. 
Consequently, the outcome at unsampled locations 
differs, producing local alterations in facies distribution 
and petrophysical properties in interwell space (Torcal 
et al., 1999).  The process of sequential Gaussian 
simulation is summarized in Fig. 6. 

A. SIMULATION OR ESTIMATION? 

To create accurate simulated data, it is necessary for 
the values and scattering properties to be replicated (at 
least up to second order) in the same locations as the real 
experimental data. However, the goal of conditional 
simulations differs from estimates. The distinction lies in 
their respective objectives. 

(i) The goal of estimation is to offer an estimator 𝑍∗(𝑥) 
for every point x that is as accurate as possible to the real, 
unknown degree Z0(x). Nevertheless, these estimators 
may not be able to reflect the spatial fluctuations present 
in the actual grades {𝑍0(𝑥)}. In the context of kriging, 
reducing the deviation of the estimation involves 
smoothing the genuine variances by following the 
smoothing relationships. Correspondingly, the 
polygonal influence appraisal method presumes that the 
grade remains constant across the complete influence 
polygon of a sample, leading to an inaccurate assessment 
of the regional variations of the authentic grades. Thus, 
the estimated deposit {𝑍∗(𝑥)} may provide a prejudiced 
foundation for investigating the dispersion of real 
grades.  

 



 

 
M. Shademan, H. Farhadian 

87 
Vol 1, No. 2 / Summer 2023 

 

 

Fig. 6. The process of sequential Gaussian Simulation 

 (ii) On the other hand, the simulated data (𝑍𝑠(𝑥)), or 
better the conditionally simulated data (𝑍𝑐𝑠(𝑥)), have the 
same first two experimentally determined moments 
(mean and covariance or variogram, and the histogram) 
as the real value. On the other hand, the value 𝑍𝑠(𝑥) or 
𝑍𝑐𝑠(𝑥) produced through simulation at each point x is not 
the optimal 𝑍0(𝑥) estimator. Specifically, the variance of 
𝑍0(𝑥) estimated through conditionally simulated value 
𝑍𝑐𝑠(𝑥) is twice the kriging variance. In general, 
simulating and estimating have opposing objectives 
(Chiles and Delfiner, 2009). 

B. THE PRINCIPLE OF CONDITIONING 

Regionalizing a variable 𝑍0(𝑥) is worth considering, 
perhaps as the grade at a specific point x. This particular 
regionalized variable is seen as a manifestation of a 
stationary RF known as 𝑍0(𝑥), which has an anticipated 
mean of m and a centered covariance of C(h) or 
variogram of 2y(h). The goal is to create an RF realization 
of 𝑍𝑐𝑠(𝑥)  that resembles 𝑍0(𝑥). This means the RF 
should have the same expected value and second-order 
moment, C(h) or y(h). Additionally, the RF realization of 
𝑍𝑐𝑠(𝑥) should align with the experimental data, which 
means the simulated and experimental values should 
match the experimental data points. 

  
𝑍𝑐𝑠(𝑥0) = 𝑍0(𝑥),                   (4) 

 
The true value of 𝑍0(𝑥)  and its kriged value 𝑍𝑜𝑘(𝑥),, 

obtained from the available data {𝑍0(𝑥), where x belongs 
to I}, should be considered. These two values differ by an 
unknown error in the form of random functions: 

 

𝑍0(𝑥)= 𝑍𝑜𝑘
∗ (𝑥) + [𝑍0(𝑥)- 𝑍𝑜𝑘

∗ (𝑥)]            (5) 
 

Where, I is the range that includes all actual data and 
is to be kriged or simulated 𝑍0(𝑥) is the actual value 
𝑍𝑜𝑘

∗ (𝑥) is the estimated value estimated by an ordinary 

kriging algorithm.  
One key feature of kriging is that the difference 

between the actual value and the predicted value, known 
as the kriging error [𝑍0(𝑥)- 𝑍𝑜𝑘

∗ (𝑥)], is perpendicular to 

the predicted values: 

 

E { 𝑍𝑜𝑘
∗ (𝑥). [𝑍0(𝑥)- 𝑍𝑜𝑘

∗ (𝑥)]} = 0                                        (6) 
 

Therefore, to obtain the desired conditional 
simulation, it is sufficient to replace the unknown kriging 
error in the above formula with an isomorphic and 
independent kriging error. The conditional simulation 
that is necessary is subsequently expressed in the 
following manner: 

 

 𝑍𝑐𝑠
∗ (𝑥) =  𝑍𝑜𝑘

∗ (𝑥) + [𝑍𝑠(𝑥)- 𝑍𝑠𝑘
∗ (𝑥)]       (7) 

 

The prerequisites for carrying out a conditional 
simulation are fulfilled as we possess the subsequent 
(Chiles and Delfiner, 2009; Deutsch, 2014):  

The expected value of 𝑍𝑐𝑠(𝑥) using RF is equal to that 
of 𝑍0(𝑥) due to the unbiasedness of the Kriging 
estimator: 

 

E { 𝑍𝑜𝑘
∗ (𝑥)} =E {𝑍0(𝑥)} and E {𝑍𝑠𝑘

∗ (𝑥)} = E {𝑍𝑠(𝑥)}  
 

which entails 
 

E {𝑍𝑐𝑠(𝑥)} =E {𝑍0(𝑥)} =m    (8) 
 

This can be explained by the fact that the simulated 
kriging error and the true error [𝑍0(𝑥)-𝑍𝑜𝑘

∗ (𝑥)] have an 
isomorphic relationship with RF 𝑍𝑐𝑠(𝑥). Furthermore, 
this relationship is not dependent on 𝑍𝑜𝑘(𝑥). It can be 
observed that the similarity between RF's 𝑍𝑐𝑠(𝑥) and 
𝑍0(𝑥) is only applicable to their increments. This means 
that while the variograms of these two RFs are the same, 
their covariance may differ. However, this is not a major 
issue in geostatistics as the variogram structure function 
is prioritized over covariance. 

The simulated outcome 𝑍𝑐𝑠(𝑥) is linked to the 
empirical data as the kriging values match the actual 
values at the data points,  

 

𝑍𝑜𝑘
∗ (𝑥0) = 𝑍0(𝑥0) (9) 

 

Remark 1: The kriging weights for both 𝑍𝑜𝑘
∗ (𝑥)  and 

𝑍𝑠𝑘
∗ (𝑥) are identical because the two random fields, 

𝑍0(𝑥)  and 𝑍𝑠(𝑥), are isomorphic and the kriging setups 
are identical as well. 

Actual data are kriged
to a regular grid

Several kriged values
are generated around a
centroid located at the
grid or volume center

Unconditional
simulations of normal-
score transformed data
are performed along
each line

Values along the lines
are linearly
interpolated to grid
nodes (the more lines,
the less interpolation)

Unconditional
interpolated values are
back interpolated to
actual locations

Unconditional
interpolated values and
actual locations (well
location) are kriged

Residual:

𝑧𝑘𝑐 𝑢 − 𝑧𝑘𝑢 𝑢
Adding 𝑍𝐵𝑅 to the
original kriged map
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Remark 2: The principle of conditioning produces two 
outcomes for each point x - the kriging 𝑍𝑜𝑘

∗ (𝑥)  and the 

conditionally simulated 𝑍𝑠𝑘
∗ (𝑥). As the two kriging errors 

are independent, the variance of the conditional 
simulation's estimate of the true value can be expressed 
as:  

 

𝐸{[𝑍0(𝑥) − 𝑍𝑠𝑐(𝑥)]2} = 𝐸{[𝑍0(𝑥) − 𝑍𝑜𝑘(𝑥)]2} + 𝐸{[𝑍0(𝑥) − 𝑍𝑠𝑘(𝑥)]2}  = 2𝐸{[𝑍0(𝑥) − 𝑍𝑜𝑘(𝑥)]2} = 2𝜎𝑘
2          (10) 

 
 

Ultimately, there are five basic steps in the SGS 
process: 

1. Create a random path through the grid nodes. 
2. Go to the initial node along the path and utilize 

Kriging for determining the mean and standard 
deviation at that node by considering the environmental 
data, also known as the local conditional probability 
distribution (lCPD).  

3. Choose a value randomly from the lCPD and assign 
it as the node value.  

4. Add the recently generated value to the conditioned 

data. 
According to the given simulation algorithm, several 

realizations of the GSI dataset were created, and a 
statistical summary of the simulated GSI is given in Table 
2. 

The simulated 3D block model of the GSI values with a 
size of 25×25×10 m is shown in Fig. 7, and the simulated 
map of the values at the height of 1645 m and the 
distribution of the errors in the environment can be seen 
in Fig. 8. 

 

 
Table 2. Statistical parameters of simulated GSI values and Actual values obtained from drill holes 

Field Parameter Composites data Block Model data 

GSI% 

No of Records 582 35805 
Minimum 0 0 
Maximum 57.5 57.99 

Mean 33.66 33.6 
Skewness -1.658 -1.688 
Kurtosis 4.225 4.875 

 

 

Fig. 7. Block model of simulated GSI values 



 

 
M. Shademan, H. Farhadian 

89 
Vol 1, No. 2 / Summer 2023 

 

Fig. 8. Simulated map of GSI value at level of 1654m and the distribution of the faults around pit 

 

As can be seen from Figs. 7 and 8, there is a significant 
relationship between the simulated GSI values and the 
presence of discontinuities, especially faults in the pit 
area. To put it differently, the way GSI values are spread 
out in the Gol-Gohar iron mine No. 1 pit is associated 
with how discontinuities are spread out. As a result, 
evaluating the safety factor could be done by considering 
the covariance between the GSI values and 
discontinuities in the region. On the other hand, these 
values could be used to design a maximum slope stability 
program on pit walls. 

C. VALIDATION OF SIMULATED BLOCK MODEL 

Statistical and visual methods are used to validate the 
simulated block model and are explained below.  

D. VISUAL VALIDATION OF BLOCK MODEL 

To visually validate the simulated model, several 
cross-sections were created. Both the actual values (well 
data) and the simulated values were plotted to compare 

the mentioned groups at the common points (Fig. 9 and 
Fig. 10). 

The simulated GSI is compared with the values 
obtained from boreholes in each vertical section. The 
results show a satisfactory agreement between the 
simulated values and the data obtained from the 
boreholes.  

E. STATISTICAL VALIDATION METHOD 

The accuracy of the simulated GSI values was 
validated by a statistical method. Therefore, a Q-Q plot of 
the simulated and actual values is generated to compare 
the actual data set with the simulated data set.  

A Q-Q plot compares the quantiles of a real dataset 
with those of a simulated dataset. It is a non-parametric 
method for comparing the distributions of two data 
samples. The Q-Q plot of simulated and actual GSI values 
demonstrated in Fig. 11 shows proper coincidence 
between them. 

 

 
Fig. 9. Visual comparison of simulated and actual values 
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Fig. 10. Visual comparison of simulated and actual values 

 

 

Fig. 11. Q-Q plot of simulated and Actual GSI values 

VII. CONCLUSION 

This research shows that: 
1. Geostatistical methods can process uncertainty and 

modifications in GSI values across different locations in 
a mine field.  

2. To understand the regional behavior of GSI, 
variogram functions can be determined in the first step 
of the application. Results from variogram analysis 
indicate that the spatial structure of GSI has anisotropy 
in the horizontal surface.  

3. To interpret the behavior of the regionalized 
variable, GSI values can be estimated for each local block 
on the pit wall and maps can be prepared accordingly.  

4. The distribution of GSI values in pit No.1 at the Gol-
Gohar iron mine corresponds with the distribution of 
discontinuities, particularly faults around the pit area. 
5. Recognizing and evaluating the spatial relationship of 
the mentioned index and applying the SGS method of this 
parameter for all mining walls resulting in a simulated 
GSI map. 
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